2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Concrete Math Sum 1
Сообщение11.11.2019, 16:02 
Calculate: $$\sum_{k\in S}3^{-k}$$ $S$ is a set of all natural numbers that aren't divisible by either 2,3 or 5.

 
 
 
 Re: Concrete Math Sum 1
Сообщение04.12.2019, 20:05 
Аватара пользователя
For any subset $T\subseteq\mathbb{Z}_{\geq 0}$, define
$$f(T) := \sum_{k\in T} 3^{-k}.$$

Computing $f(S)$ can be easily done by inclusion-exclusion:
$$f(S) = f(D_1) - f(D_2) - f(D_3) - f(D_5) + f(D_6) + f(D_{10}) + f(D_{15}) - f(D_{30}),$$
where $D_n$ is the subset of $\mathbb{Z}_{\geq 0}$ formed by multiples of $n$ (in particular, $D_1=\mathbb{Z}_{\geq 0}$). Namely, we have
$$f(D_n) = \frac{1}{1-3^{-n}},$$
from which the value of $f(S)$ follows instantly.

 
 
 [ Сообщений: 2 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group