2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Торшерные числа
Сообщение25.10.2019, 15:52 
Аватара пользователя
Назовём натуральное число торшерным, если оно составное и при этом не равно квадрату простого числа.

Доказать, что наибольшее натуральное число, не представимое в виде суммы $n\geqslant2$ торшерных чисел, равно $6n+7$.

 
 
 
 Re: Торшерные числа
Сообщение27.10.2019, 12:05 
Аватара пользователя
1. Все четные числа $\geqslant6$ торшерны; наименьшее нечетное т-число - $15$;
2. $6n+7$ действительно нельзя, т.к. это $(n-1)$ шестерок и $13$, и чтобы из $13$ сделать т-число, его надо уменьшить на одно из нечетных $\{1,3,5,7\}$, а шестерку (с сохранением торшерности) можно увеличивать только на четное $\{2,4,6\}$;
3. Для четного $>6n+7$ (даже $\geqslant6n$) берем $(n-1)$ шестерок и оставшийся четный кусочек будет торшерным;
4. Для нечетного $\geqslant6n+9$ берем $(n-2)$ шестерок, $15$ и с четным остатком тоже все в порядке.

 
 
 [ Сообщений: 2 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group