Никакой конкретной задачи не стоит. Я просто хотел сказать, что сечение потенциального потока не восстанавливает свою форму после обтекания любого тела в любой задаче, больше ничего. Я слышал про парадокс Даламбера об отсутствии сопротивления в потоке идеальной жидкости и думал, что решение этого парадокса в том, что потенциальное течение совершенно симметрично в обе стороны по всем параметрам, поэтому нет возможности даже сказать, куда оно течет. Следовательно, невозможно сказать, куда должна быть направлена сила сопротивления и, следовательно, она должна быть нулевой. Теперь я что-то в этом не уверен.
Картинка - численное решение уравнения Лапласа, а линии тока - численное интегрирование по полученному полю скоростей. Не думаю, что оно настолько грубое, что это самое не сохранение плоскости сечения происходит из-за численного решения.
Нулевая скорость во внутренних углах просто позволяет сразу понять, что сечение обязательно зацепится об углы, следовательно, нет необходимости даже просчитывать форму сечения, оно никак не может остаться плоским.
Нулевая скорость потока внутри прямого угла следует из соображений симметрии для этого точного решения, где три потока образуют прямой угол, который обтекается четвертым потоком: