2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2  След.
 
 Решение системы уравнений (маткад)
Сообщение04.04.2019, 19:15 
Здравствуйте. Необходимо выразить deltaUk через jk в приведенной на скрине системе уравнений.
Вложение:
RESENIE-URAVNENIY-ROGOVSKOGOc884e708fb502fe8.png

Маткад пишет, что решение не найдено. В чём может быть дело, и как в итоге найти решение в данном программном пакете?
Заранее благодарен.
P.S. Решить необходимо именно в маткаде. Так-то я могу и вручную найти интеграл и подставить dk из первого уравнения во второе.

// Тематика ветки уточнена в конце сообщения p1387004 и в начале сообщения p1387063, но и анализ решения проблемы в mathcad приветствуется. / GAA.

// Физика обсуждается в «Построение ВАХ тлеющего разряда по уравнению Роговского» [ПРР(Ф)] /GAA.


У вас нет доступа для просмотра вложений в этом сообщении.

 
 
 
 Re: Решение системы уравнений (маткад)
Сообщение04.04.2019, 19:33 
Аватара пользователя
Никак. Маткад не умеет решать такие сложные задачи.
Он может решать задачу линейного программирования и делать простые преобразования раскрытие скобок, группировку коэффициентов, замену одних формул другими по табличке для известных преобразований(Фурье, Лапласа).

Вы можете решить численно, заменив интеграл суммой.

 
 
 
 Re: Решение системы уравнений (маткад)
Сообщение04.04.2019, 19:37 
Хорошо, а если не цепляться за маткад, в каких программах ещё это можно посчитать, я имею в виду именно в таком виде, не заменяя интеграл на сумму? Это не принципиально, но хотелось бы знать на будущее, возможно ли это в принципе. Установлены: вольфрам, матлаб, но насколько я знаю, там это тем более не посчитаешь.

 
 
 
 Re: Решение системы уравнений (маткад)
Сообщение04.04.2019, 21:11 
Попробовал решить численно, заменив интеграл суммой. Но столкнулся с той же проблемой, которую описывал выше - необходимо выразить deltaUk через jk. Даже после замены интеграла на сумму я не могу вытащить необходимые мне переменные из степени экспоненты. К тому же теперь получается, что мне надо deltaUk вынести ещё и из оператора суммы, так как dk зависит и от jk, и от deltaUk. Либо я что-то не так делаю.

 
 
 
 Re: Решение системы уравнений (маткад)
Сообщение05.04.2019, 11:21 
optimden в сообщении #1385986 писал(а):
Необходимо выразить deltaUk через jk в приведенной на скрине системе уравнений
Из первого уравнения на скрине можно выразить deltaUk через jk. Просто интеграл в элементарных функциях не берётся, и не возьмется, скорее всего. В пакете можно найти его выражение через специальные функции, например интегральную экспоненту. [Но даже если бы интеграл можно было выразить через элементарные функции, то выразить deltaUk через jk (так чтобы выполнялось второе уравнение), как правило, затруднительно.]

Поэтому, надо бы написать, в чем состоит задача. [«Зависимость в элементарных функциях», боюсь, не постановка задачи.]

А дальше уже думать, что численно находить. Например, при фиксированных всех параметрах, кроме $\gamma$ и $j_k$, можно из второго уравнения численно найти зависимость $\gamma$ от $j_k$ (в виде набора точек $(\gamma, j_k)$ ). Затем, подставив её в выражение для deltaUk (как функции $\gamma$ и jk), выразить deltaUk через jk. Ясно, что надо постараться выделить качественно различные ситуации (тогда численные расчёты позволят представить общую картину) или иметь по самой постановке задачи фиксированные значения всех параметров, кроме $\gamma$ и jk, например.

 
 
 
 Re: Решение системы уравнений (маткад)
Сообщение05.04.2019, 11:58 
Спасибо за ответ. Сама задача состоит именно в том, чтобы для определенного диапазона значений jk получить значения deltaUk и построить зависимость второго от первого. Все остальные параметры являются постоянными, кроме dk, разумеется. По сути исходная физическая задача - получить либо зависимость deltaUk=f(jk) для построения вольт-амперной характеристики тлеющего разряда, либо просто иметь возможность хотя бы численно её строить.
Да, немного глупый вопрос: я взял с помощью маткада интеграл от левой части второго уравнения, один из компонентов получившегося выражения, как вы и сказали, экспоненциальный интеграл. Я не особо знаю, что это такое. Могу я в теории им пренебречь? Тогда задача упрощается и можно подставить dk(deltaUk,jk) из первого выражения во второе, перенести часть выражения налево и построить графики поверхностей двух функций, каждая из которых зависит от deltaUk, jk. Потом найти координаты кривой, по которой они пересекаются.
А на счёт численного нахождения из второго уравнения... Я всё же не понимаю, как можно численно решить эту систему не выразив-таки deltaUk через jk. Разве что задать фиксированное jk и в цикле проходится по всем возможным значениям deltaUk с малым шагом, считая правую часть второго выражения. Если она будет в пределах погрешности равна левой части, то уточнять методом разбиения шага по deltaUk на два для более точного решения.

 
 
 
 Re: Решение системы уравнений (маткад)
Сообщение05.04.2019, 12:16 
optimden, приведите, пожалуйста, значения параметров и констант $\gamma$, $\varepsilon 0$, p, A, B.

Я bi забыл указать.

 
 
 
 Re: Решение системы уравнений (маткад)
Сообщение05.04.2019, 12:23 
Изображение

bi = 5.18*10^-6

 
 
 
 Re: Решение системы уравнений (маткад)
Сообщение05.04.2019, 12:45 
Проверьте, пожалуйста, будет ли сходиться интеграл $$\int\limits_0^1\exp\left(\frac {-C}{x-1}\right) dx, \qquad C >0.$$

 
 
 
 Re: Решение системы уравнений (маткад)
Сообщение05.04.2019, 13:24 
Маткад ошибки не выдаёт, стало быть, интеграл сходится. В решении также присутствуют экспоненциальные интегралы.

 
 
 
 Re: Решение системы уравнений (маткад)
Сообщение05.04.2019, 14:23 
Частным случаем $C>0$ является $C=1$.
$$\int\limits_0^1\exp\left(\frac 1 {1-x}\right) dx = \int\limits_1^{+\infty}\frac {e^y}{y^2} dy=+\infty.$$

 
 
 
 Re: Решение системы уравнений (маткад)
Сообщение05.04.2019, 14:26 
Хотите сказать, что эта система уравнений в принципе неправильная и не решается?

 
 
 
 Re: Решение системы уравнений (маткад)
Сообщение05.04.2019, 17:12 
Вывод о конкретной системе (с указанными значениями параметров) очевиден.

Для полноты картины.
Результат вычислений в Mathcad 13 (Maple-ориентированные символьные вычисления)
Вложение:
Ei.PNG

Результат вычислений в Mathcad 15 (MuPAD-ориентированные символьные вычисления)
Вложение:
Ei_Mathcad_15.PNG


Upd. И в Matlab 6.5, и в Matlab R2013b
Код:
>> syms x
>> int(exp(1/(1-x)), 0, 1)
ans = Inf
И в R2013b notebook MuPAD
[int(exp(1/(1-x)), x=0..1)
$\infty$


У вас нет доступа для просмотра вложений в этом сообщении.

 
 
 
 Re: Решение системы уравнений (маткад)
Сообщение05.04.2019, 18:53 
Спасибо за помощь. Буду искать ошибку.

 
 
 
 Re: Решение системы уравнений (маткад)
Сообщение10.04.2019, 17:53 
Аватара пользователя
optimden в сообщении #1386184 писал(а):
Буду искать ошибку.

Может быть $\Delta U_k<0$?

 
 
 [ Сообщений: 28 ]  На страницу 1, 2  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group