2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Два невырожденных предельных распределения сум.функций
Сообщение24.02.2019, 11:06 
Это просто информационное сообщение. Оно не содержит доказательств, а только идеи, так как статья находится в стадии публикации.


Утверждение

Существует только два предельных невырожденных распределения для сумматорных арифметических функций: нормальное распределение - $N_{a,\sigma^2}$ и распределение $F_{\alpha,\beta}$.


Обоснование

Известно (стр.188 Боровков "Теория вероятностей", 1999) для сумм одинаково распределенных независимых случайных величин, кроме вырожденных, предельными являются нормальное распределение - $N_{a,\sigma^2}$ и распределение $F_{\alpha,\beta}$. Нормальное, если дисперсия случайных величин конечна и распределение $F_{\alpha,\beta}$, если дисперсия - бесконечна.

Известно также, что любую арифметическую функцию $f:N \to R$ можно представить, как последовательность случайных величин $f_n:f_n(m)=f(m),(1 \leq m \leq n)$, которые находятся в разных вероятностных пространствах.

Ранее в теме об асимптотической независимости арифметических функций было показано, что большой класс арифметических функций обладает свойством асимптотической независимости. Асимптотической независимости арифметических функций $f:N \to R$ соответствует квази асимптотическая независимость соответствующих случайных величин $f_n$ при $n \to \infty$.

Рассмотрим сумматорную арифметическую функцию $S(n)=\sum\limits_{k=1}^n {f(k)}$, которой соответствует последовательность случайных величин $S_n:S_n(k)=S(k),(1 \leq k \leq n)$.

Ранее было доказано утверждение, что если случайные величины $f_k:f_k(m)=f(m),(1 \leq m \leq n)$ кважи асимптотически независимы, то при $n \to \infty$ и любом $t$ существует предел характеристической функции - $\lim_{n \to \infty}\varphi_{S_n}(t)$, непрерывный в точке $t=0$, то для данной характеристической функции выполняется:

$\varphi_{S_n}(t)=\prod_{k=1}^n {\varphi_f_k(t)}$. (1)

Формула (1) как бы соответствует независимости случайных величин $f_n$ при $n \to \infty$. Отсюда название - асимптотическая независимость.

Обозначим $\varphi_f(t)$ - характеристическую функцию предельного распределения.

Пусть $\varphi_{f_n}(t)-\varphi_f(t)=r$, тогда для квази асимптотически независимых случайных величин при $n \to \infty$ получаем:

$\varphi_{S_n}(t)=\prod_{k=1}^n {\varphi_f_k(t)}=(\varphi_f(t)+r)^n$.

Можно доказать, что если $r=|t|o(1/n)$ (2), то:

$\varphi_{S_n}(t)=(\varphi_f(t))^n+|t|o(1)$, (3)


т.е. на основании (3) при $n \to \infty$ в окрестности $t=0$ мы получаем как бы одинаковое распределение случайных величин.

При выполнении (2) если слагаемые арифметическик функции ограничены, то с одной стороны они асимптотически независимы, а соответствуюшие случайные величины квази асимптотически независимы, а с другой - дисперсия их конечна, тогда получаем предельным нормальное распределение.

Большой класс неограниченных функций также обладает свойством асимптотической независимости, а соответствующие случайные величины квази асимптотически независимы. Поэтому, если для них выполняются условие (2) и математические ожидания соответствующих случайных величин конечны (дисперсии бесконечны), тогда получаем предельным распределение $F_{\alpha,\beta}$.

Cлагаемые сумматорных функций Мертенса - $M(n)$, Лиувилля - $L(n)$, количества простых чисел, не превышащих $n$ - $\pi(n)$ являются ограниченными, а следовательно асимптотически независимыми с конечной дисперсией. Однако, условие $r=|t|o(1/n)$ для них не выполняется, поэтому они не имеют предельным нормальное распределение.

Слагаемые сумматорных функцмй Чебышева являюся неограниченными, но асимптотически независимыми с конечными математическими ожиданиями соответствующих случайных величин.Однако, условие $r=|t|o(1/n)$ также для них не выполняется, поэтому они не имеют предельным распределение $F_{\alpha,\beta}$.

Так как других предельных распределений у указанных сумматорных арифметических функций быть не может, то указанные сумматорные функции вообще не имеют предельных распределений.

Повторяю, что сказанное не является доказательством, а просто некоторым обоснованием вышесказанного утверждения.

 
 
 
 Re: Два невырожденных предельных распределения сум.функций
Сообщение24.02.2019, 12:18 
vicvolf в сообщении #1378058 писал(а):
статья находится в стадии публикации

Стадии публикации обычно предшествует стадия написания....

 
 
 
 Posted automatically
Сообщение24.02.2019, 13:02 
 i  Тема перемещена из форума «Математика (общие вопросы)» в форум «Пургаторий (М)»

 
 
 
 Re: Два невырожденных предельных распределения сум.функций
Сообщение24.02.2019, 23:17 
 !  vicvolf, бан на две недели за очередное возобновление темы из Пургатория.

 
 
 [ Сообщений: 4 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group