2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Диффур
Сообщение06.04.2008, 17:21 
$x^2y^2(y'y''' - y''^2) -xy'(xy' - y)(yy'' - y'^2) = y^2y'^2ln(\sqrt {x} y^{-1}y')$

Подскажите тип уравнение и с чего начинать решение?

Добавлено спустя 2 часа 36 минут 55 секунд:

пробывал решать, понижая степень - ни к чему не привело

 
 
 
 
Сообщение06.04.2008, 19:23 
Ужасный диффур! Думаю, только численно!

 
 
 
 
Сообщение06.04.2008, 19:27 
Пусть $\ln(\sqrt{x}y'y^{-1})=z$. Тогда поделив обе части на $y^2y'^2$, Вы получите диффур с функцией $z$, если учтете, что $z'=\frac{1}{2x}+\frac{y''}{y'}-\frac{y'}{y}$.
P.S. Ну и бяка :shock:

 
 
 [ Сообщений: 3 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group