Нет, "оканчиваться на 10" и "делится на 10" - разные вещи. Тем более нужно доказать, что такие числа не существуют. Так как такие числа можно представить в виде

в виду взаимной простоты сомножителей и мултипликативность функции делителей, то число делителей таких чисел всегда делится на 4. Другие аналогично.
-- 12.12.2018, 09:35 --функции делителей, то число делителей таких чисел всегда делится на 4
Вот почему у меня всегда были проблемы по литературе. Мог бы написать "кратное 4"
В общем виде, может ли число, оканчивающее на

делится на

Может, если
-- 12.12.2018, 09:45 --осторожнее. Должно выполняться
