на стр.92 Тамма
.
Там есть два ляпсуса. один состоит в том, что положительность вторых производных не является необходимым условием минимума функции;
другой-- то о чем я говорил, из того, что в положении равновесия потенциальная энергия не достигает минимума не следует, что положение равновесия неустойчиво (имеются примеры). В общем случае надо пользоваться аналитичностью системы и ссылаться на результаты Козлова и Паламодова. Кое-что про это написано в книжке Болотин Карапетян Кугушев Трещев Теор. механика в разделе про устойчивость движения стр 227.
Минимума у функции

в книжке Тамма действительно нет, но это следует из принципа максимума для гармонических функций, а не из таких наивных рассуждений