2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Посмотреть правила форума



Начать новую тему Ответить на тему
 
 Метод Монте-Карло
Сообщение21.06.2018, 13:16 


21/06/18
2
$$\int\limits_{0}^{1}\cdot dx_1\int\limits_{0}^{1}\cdot dx_2\int\limits_{0}^{1}\cdot dx_3\cdot\int\limits_{0}^{\infty}dx_4\cdot
\bigg(x_2 \cdot x^2_3 \cdot  e^{-4x_4} \cdot \sqrt{2+\cos(6x_1 \cdot x^3_2 \cdot x^7_3 \cdot x^9_4)} \bigg) $$
Метод используется через ..распределение на плотности. $$\int\limits_{0}^{1}1 \cdot dx_1, p(x_1)=1=p(x_2)=p(x_3)=p(x_4)$$\\
В нашем случае берется интеграл $$\int\limits_{0}^{\infty}x_2dx_2$$ и этот интеграл расходится, что делать в таких случаях?
Нужно сделать так, чтобы плотность =1

 Профиль  
                  
 
 Re: Метод Монте-Карло
Сообщение21.06.2018, 14:51 
Заслуженный участник
Аватара пользователя


23/07/05
18013
Москва
krotlol11 в сообщении #1321491 писал(а):
Нужно сделать так, чтобы плотность =1
Что за плотность? Я не вижу в интеграле никаких плотностей. Вижу только многочисленные точки, часть из которых можно проинтерпретировать как знаки умножения (ненужные), а часть непонятно что означает.

krotlol11 в сообщении #1321491 писал(а):
В нашем случае берется интеграл $$\int\limits_{0}^{\infty}x_2dx_2$$
Откуда взялся такой интеграл?

 Профиль  
                  
 
 Re: Метод Монте-Карло
Сообщение21.06.2018, 16:23 


21/06/18
2
Вычислить интеграл можно 2мя способами.
а)стандартным ММК
б)одним из методов понижающих дисперсию (метод существенной выборки, выделение главной части, понижение порядка интегрирования)

 Профиль  
                  
 
 Re: Метод Монте-Карло
Сообщение21.06.2018, 16:56 
Заслуженный участник
Аватара пользователя


23/07/05
18013
Москва
Всё равно непонятно, откуда взялся
krotlol11 в сообщении #1321491 писал(а):
$$\int\limits_{0}^{\infty}x_2dx_2$$

 Профиль  
                  
 
 Re: Метод Монте-Карло
Сообщение21.06.2018, 20:01 
Заслуженный участник
Аватара пользователя


11/03/08
10043
Москва
А что это у Вас за равномерное распределение от нуля до бесконечности?

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 5 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group