Давно мучаюсь с одной тч-шкой.
Первоначальная задача: найти все такие натуральные a, b, c и d;a>1, b>1, c>1, d>1 такие что
Очевидно, что при b=2 это частный случай уравнения Пелля. Однако, если увеличить b, то начинает казаться, что решений нет вообще. Возможно, что при четных b можно решить, используя явную или рекуррентную формулу решений уравнения Пелля. При нечетных продвижения есть только при b=3, ведь в этом случае можно иногда сводить к Великой Теореме Ферма, например, если
d содержит в разложении на простые множители только 2 и 3, при этом
. Если d=2, то сводится к ВТФ только в случае, если
. Иначе получается уравнение вида
, где k и l натуральные, при этом k не четно. Самое удивительное то, что если k может быть четным, то решения есть, например k=18, l=7.
Прошу идеи, а если возможно помощь в решении.