Пусть
-- монотонно стремящаяся к нулю последовательность положительных чисел
верно ли, что
А я вот теорему Штольца никогда не помню. Знаю, конечно, о её существовании, но запомнить формулировку -- не в силах. Помню лишь базовую её идею, из которой всё очевидным образом следует безо всяких теорем.
Конкретно здесь. Ну к чему тут положительность да ещё и монотонность иксов?... Всем ежам ведь понятно: если иксы ограничены по по модулю, то и подпредельные выражения тем более ограничены по модулю. Ну а если те иксы ещё и к нулю стремятся -- так и очевидно. Как эту очевидность формализовать?... -- стандартным приёмом типа "эпсилон пополам". Но лучше не в классическом его варианте, а вульгарнее.
Берём любую последовательность
, стремящуюся к бесконечности, но медленнее, чем сам эн. Из того, что медленнее, мгновенно следует, что часть суммы до
даёт результат, стремящийся к нулю. А из того, что всё-таки неограниченно возрастает (с учётом стремления иксов к нулю) -- не менее мгновенно и вторая часть стремится к нулю. И никаких
натягиваний ежа на глобус Штольцев, тем паче двукратных.