2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 вычисление определителей n-го порядка
Сообщение20.01.2006, 15:23 
Нужна рек. формула для вычисления определителей $\phi=\left|\begin{array}{cccc}
1&\frac1{2^5}&\ldots&\frac1{n^5}\\
\frac1{2^5}&\frac1{3^5}&\ldots&\frac1{(n+1)^5}\\
\ldots&\ldots&\ldots&\ldots\\
\frac1{n^5}&\frac1{(n+1)^5}&\ldots&\frac1{(2n-1)^5}
\end{array}
\right|$
и
$\psi=\left|\begin{array}{cccc}
\frac1{2^5}&\frac1{3^5}&\ldots&\frac1{(n+1)^5}\\
\ldots&\ldots&\ldots&\ldots\\
\frac1{(n+1)^5}&\frac1{(n+2)^5}&\ldots&\frac1{(2n-2)^5}
\end{array}
\right|$

 
 
 
 Re
Сообщение13.04.2006, 09:07 
А какая интересная ситуация вышла!
Из предложения, что \phi_n\to 0, \psi_n\to 0 я вывел, что \zeta(5) -- иррациональное, но они не только не сходятся к 0, но даже не ограничены!
Если кто еще пытается мне помочь -- можно остановиться...
Абидна, да! 8-(

 
 
 
 
Сообщение13.04.2006, 09:23 
То, что определители стремятся к нулю очевидно. Во втором определителе последний член должен быть другим.

 
 
 
 
Сообщение01.03.2009, 21:28 
Аватара пользователя
В некотором смысле эти матрицы могут рассматриваться как обобщение матрицы Гильберта:
http://mathworld.wolfram.com/HilbertMatrix.html

 
 
 [ Сообщений: 4 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group