2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Игра с кучками камней
Сообщение17.04.2018, 17:36 
Аватара пользователя
Есть $n$ камней распеделённых по $k>1$ непустым кучкам, а сами кучки расположены по кругу. Таким образом, у каждой кучки есть две соседние.
Игра состоит в последовательности ходов. На каждом ходе выбирается случайно и равномерно одна кучка, и один камень из неё перекладывается в случайно выбранную соседнюю кучку. Если исходная кучка при этом становится пустой, то она исчезает, и игра продолжается с оставшимися $k-1$ кучками на круге.
Игра заканчивается, когда остаётся ровно одна кучка.

Найдите мат. ожидание количества ходов в такой игре, если в начальном расположении количества камней в кучках по кругу равны $x_1$, ..., $x_k$ (с условием $x_1+\dots+x_k=n$).

 
 
 
 Re: Игра с кучками камней
Сообщение21.04.2018, 14:29 
$S_2(x_1,...,x_k)$ - второй симметрический.
Индукция, однако:
База $n=2$ явно проверяется в соответствии с формулой полной вероятности
Шаг: пишем рек. формулу; счастливым образом, появление нулей среди $x_i$-х не мешает работать угаданной формуле...
Ну, замечательная задача: так редко удается получать явные ответы!

-- 21.04.2018, 16:30 --

И вдвойне неожиданно, что от порядка следования чисел ответ не зависит!

 
 
 
 Re: Игра с кучками камней
Сообщение21.04.2018, 15:57 
Аватара пользователя
DeBill, всё верно!
Источник задачи: https://mathoverflow.net/q/296418
Говорят, что тот же ответ обобщается на произвольные регулярные связные графы (на кучках-вершинах).

 
 
 [ Сообщений: 3 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group