Все мы знаем задачу двух конвертов. Пусть в одном конверте лежит сумма Х, а во втором 2Х, потом их отдают двум игрокам, которые думают так, ага если в моем конверте какая-то сумма Y, то в другом равновероятностно Y/2 и 2Y, значит матожидание выигрыша 1.25Y. Так думает каждый, и получает каждому выгодно обмениваться, т.е. при обмене они увеличат свое матожидание выигрыша, а суммарная сумма будет одной и той же. Казалось бы парадокс. Но нет, ведь Х должно иметь какое-то вероятностное распределение, и иметь максимальное значение
, чтобы вообще можно было ввести какое-то вероятностное распределение. Тогда максимальное значение во втором конверте будет
, т.е. конверты уже не симметричны, если мы знаем, какая сумма лежит в конверте. Для простоты пусть суммы в конвертах будут принимать значения
и
, при
. Т.е. максимальное значение суммы в одном конверте
, а в другом
. Суть задачи от этого не меняется. Тогда игрокам при виде своей суммы в конверте должны принимать решение об обмене, и обмен может произойти только тогда, когда оба согласятся, это важно! Так вот, каждый может рассуждать так:
Ага, в моем конверте сумма
, значит в том конверте с вероятностью 1/2 суммы
и
, т.е. выгодно меняться. Но, выгодно обменяться только при условии, что если во втором конверте сумма
, и тот игрок также согласится обменяться. А тот игрок согласится обменяться только в случае, если в конверте другого игрока сумма в два раза больше, и он согласится обменяться. Продолжая эту рекурсию дальше, доходим до игрока с наибольшей суммой в игре,
, и он ее точно обменивать не будет, т.к. она наибольшая. Дальше спускаемся вниз по логической ступеньке, если игрок с суммой
не будет ее обменивать, тогда не надо обмениваться игроку с суммой
, т.к. как он не получит выгоды, и так. до игрока с суммой 1, которому уже нечего терять. Т.е. оптимальная стратегия для каждого игрока - не обмениваться никак.
Если бы обмен не зависел от воли другого игрока, а происходил бы с банком, то оптимальная стратегия была бы обменивать конверты, только если в конверте не максимальная сумма в игре
, тогда действительно матожидание выигрыша будет больше. Правда в случае двух игроков такая стратегия не симметрична, поэтому не работает.
Что думаете по этому вопросу?