2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Inequality
Сообщение22.12.2017, 22:25 
if $a,b,c$ are distinct real number, then minimum of $\displaystyle \frac{a^2}{(b-c)^2}+\frac{b^2}{(c-a)^2}+\frac{c^2}{(a-b)^2}$

Using Cauchy Schwarz Inequality $\displaystyle \frac{a^2}{(b-c)^2}+\frac{b^2}{(c-a)^2}+\frac{c^2}{(a-b)^2}\geq \frac{(a+b+c)^2}{(a-b)^2+(b-c)^2+(c-a)^2}$

can not go further, Help Required

 
 
 
 Re: Inequality
Сообщение23.12.2017, 12:11 
$$\frac{a^2}{(b-c)^2}+\frac{b^2}{(c-a)^2}+\frac{c^2}{(a-b)^2}-2=\dfrac{(a^3+b^3+c^3-(ab+bc+ca)(a+b+c)+6abc)^2}{(a-b)^2(b-c)^2(c-a)^2}$$

 
 
 [ Сообщений: 2 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group