2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 На сколько придется приподнять радиатор?
Сообщение17.11.2017, 15:06 
Учусь, буду проводить опыт. Имеется плата, есть процессор и радиатор. В качестве эксперимента предлагается измерить теплоотвод при неплотном прилегании поверхности радиатора к процессору. Схема на скорую руку вот:
Изображение
Задача такова: определить насколько нужно будет увеличить в размерах крепление (винтик) радиатора слева по сравнению с тем, что справа, для того, чтобы появился воздушный зазор 0,1 мм.
Каковы идеи (чуть все увеличил для наглядности):
Изображение
Рассмотрим прямоугольный треугольник ABC:
Известна длина BC- длина корпуса процессора из справочника =25 мм, AB=0,1 мм, следовательно AC=\sqrt 625,01$\approx$25.000199. Из этого $\frac {BC}{AC}$, \sin$\alpha$$\approx$89^{\circ}
Соответственно, чтобы найти $Y$ надо еще измерить высоту процессора (насколько он "выпирает" относительно текстолита). Вопрос: правилен ли вообще такой подход и как связать два треугольника друг с другом - выходит, они подобны? Необходимо найти и $DE$, а затем сложить с высотой процессора. Тогда я получу значение для винтика, который обеспечит необходимый воздушный зазор?

 
 
 
 Re: На сколько придется приподнять радиатор?
Сообщение17.11.2017, 15:51 
Hsad в сообщении #1266072 писал(а):
как связать два треугольника друг с другом - выходит, они подобны?

Да. Если я не окончательно забыл школьную геометрию, то $DE$ относится к $AB$ так же, как $DA$ относится к $AC$.

 
 
 
 Re: На сколько придется приподнять радиатор?
Сообщение17.11.2017, 17:50 
А зачем вам искать новый винтик? Достаточно будет чуть ослабить имеющийся, и вы получите необходимый зазор.

 
 
 
 Re: На сколько придется приподнять радиатор?
Сообщение17.11.2017, 20:04 
Hsad в сообщении #1266072 писал(а):
Вопрос: правилен ли вообще такой подход и как связать два треугольника друг с другом - выходит, они подобны?

Подобны. Поэтому синусы вам не нужны.
Например если $BE=BC$, то приподняв винтик на 0,2мм вы приподнимете радиатор на 0,1мм.

Только воздушного зазора у вас может не получиться: между радиатором и процессором намазана термопаста, которая спутает вам все карты и результаты эксперимента не сойдутся с теорией.

 
 
 
 Re: На сколько придется приподнять радиатор?
Сообщение17.11.2017, 20:31 
Аватара пользователя
wrest в сообщении #1266168 писал(а):
Только воздушного зазора у вас может не получиться: между радиатором и процессором намазана термопаста, которая спутает вам все карты и результаты эксперимента не сойдутся с теорией.


Тут проблема даже не в термопасте. А в том, что вся конструкция закреплена на гибком текстолите, плюс расчеты делаются исходя из того, что процессор абсолютно параллелен плате. И ловится блоха размером 0.1 мм...

Делать надо по другому:
1. Надо найти или выпросить у кого-то микрометр.
2. Этим микрометром подобрать материал толщиной 0.1 мм.
3. Из этого материала вырезать узкую полоску. Достаточно узкую, чтобы слабо влияла на теплообмен.
4. Подсунуть эту полоску под радиатор с краю процессора.

UPD: а лучше не полоску, а два небольших пятка по углам процессора.

 
 
 
 Re: На сколько придется приподнять радиатор?
Сообщение18.11.2017, 00:43 
Vladimir-80 в сообщении #1266124 писал(а):
А зачем вам искать новый винтик? Достаточно будет чуть ослабить имеющийся, и вы получите необходимый зазор.

Если его ослабить чуть-чуть, то ничего не изменится. Если ослабить сильнее, то уже радиатор с одной из сторон болтаться будет.
wrest в сообщении #1266168 писал(а):
Hsad в сообщении #1266072 писал(а):
Вопрос: правилен ли вообще такой подход и как связать два треугольника друг с другом - выходит, они подобны?

Например если $BE=BC$, то приподняв винтик на 0,2мм вы приподнимете радиатор на 0,1мм.

Это Вы привели в качестве примера или были использованы точные расчеты? :D
EUgeneUS в сообщении #1266175 писал(а):
wrest в сообщении #1266168 писал(а):
Только воздушного зазора у вас может не получиться: между радиатором и процессором намазана термопаста, которая спутает вам все карты и результаты эксперимента не сойдутся с теорией.


Тут проблема даже не в термопасте. А в том, что вся конструкция закреплена на гибком текстолите, плюс расчеты делаются исходя из того, что процессор абсолютно параллелен плате. И ловится блоха размером 0.1 мм...

Делать надо по другому:
1. Надо найти или выпросить у кого-то микрометр.
2. Этим микрометром подобрать материал толщиной 0.1 мм.
3. Из этого материала вырезать узкую полоску. Достаточно узкую, чтобы слабо влияла на теплообмен.
4. Подсунуть эту полоску под радиатор с краю процессора.

UPD: а лучше не полоску, а два небольших пятка по углам процессора.

Из какого-материала? Может стоит увеличить "блоху" допустим до 0,4мм? Материал скорее всего все равно повлияет на теплообмен.
А так на предприятии могу достать что угодно почти. Любой инструмент и любой материал.

 
 
 
 Re: На сколько придется приподнять радиатор?
Сообщение18.11.2017, 00:58 
Hsad в сообщении #1266284 писал(а):
Это Вы привели в качестве примера или были использованы точные расчеты?

Да, в качестве примера точного расчета. :mrgreen:
Вы же, верно, шутите? Или правда не знаете что значит "подобные фигуры"?

 
 
 
 Re: На сколько придется приподнять радиатор?
Сообщение18.11.2017, 11:10 
EUgeneUS в сообщении #1266175 писал(а):
Этим микрометром подобрать материал толщиной 0.1 мм.
Обычный лист бумаги.

 
 
 
 Re: На сколько придется приподнять радиатор?
Сообщение18.11.2017, 12:30 
wrest в сообщении #1266293 писал(а):
Hsad в сообщении #1266284 писал(а):
Это Вы привели в качестве примера или были использованы точные расчеты?

Да, в качестве примера точного расчета. :mrgreen:
Вы же, верно, шутите? Или правда не знаете что значит "подобные фигуры"?

Последний раз я сталкивался с подобными треугольниками лет 5-6 назад. :) Сегодня пришлось повторить теорию.

 
 
 
 Re: На сколько придется приподнять радиатор?
Сообщение18.11.2017, 12:53 

(Оффтоп)

Hsad в сообщении #1266369 писал(а):
Последний раз я сталкивался с подобными треугольниками лет 5-6 назад. :) Сегодня пришлось повторить теорию.
"Повторить теорию" - звучит очень пафосно для вопроса из геометрии какого-нибудь пятого класса средней школы.

 
 
 
 Re: На сколько придется приподнять радиатор?
Сообщение18.11.2017, 18:03 
realeugene в сообщении #1266373 писал(а):

(Оффтоп)

Hsad в сообщении #1266369 писал(а):
Последний раз я сталкивался с подобными треугольниками лет 5-6 назад. :) Сегодня пришлось повторить теорию.
"Повторить теорию" - звучит очень пафосно для вопроса из геометрии какого-нибудь пятого класса средней школы.

(Оффтоп)

Ой, извините. Я же каждый день сижу с учебником геометрии в руках или каждый день решаю задачи. Когда на протяжении нескольких лет не сталкиваешься с этим вообще, то без простейшего прочтения той же главы из учебника не обойтись. К слову, геометрию начинают изучать в 7 классе, а подобные треугольники в 8 или 9. Поэтому, пожалуйста, давайте не будем об этом (занудничать и страдать субъективизмом).


-- 18.11.2017, 19:55 --

wrest в сообщении #1266168 писал(а):
Hsad в сообщении #1266072 писал(а):
Вопрос: правилен ли вообще такой подход и как связать два треугольника друг с другом - выходит, они подобны?

Подобны. Поэтому синусы вам не нужны.
Например если $BE=BC$, то приподняв винтик на 0,2мм вы приподнимете радиатор на 0,1мм.

Только воздушного зазора у вас может не получиться: между радиатором и процессором намазана термопаста, которая спутает вам все карты и результаты эксперимента не сойдутся с теорией.

Увеличил зазор до 1мм. В итоге заново посчитав, получилось, что винтик слева на 1,98 мм должен быть выше того, что справа! :D Как в воду глядели!

 
 
 [ Сообщений: 11 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group