Простым перебором вариантов посчитаем вероятность для малого количества. Для 4 получится

. Для 6 получится

.
Применим теорему о условной вероятности. В ящике лежат перемешанные шары: 50 - черных, 50 - белых . Кто вытащил белый шар - тот выбран в комиссию.
1.Вероятность из двух сенаторов от первого штата быть выбранным только одному равна 2*50*50/(100*99).
Две комбинации: ЧБ и БЧ, черный (50/100), белый шар (50/99).
2.Вероятность из двух сенаторов от второго штата быть выбранным только одному равна 2*49*49/(98*97).
Две комбинации: ЧБ и БЧ, черный (49/98), белый шар (49/97).
Перемножим вероятности двух этих событий (из двух штатов только по одному представителю попали в комиссию.
3.Вероятность из двух сенаторов от третьего штата быть выбранным только одному равна 2*48*48/(96*95).
Две комбинации: ЧБ и БЧ, черный (48/96), белый шар (48/95).
Опять перемножим вероятности предыдущих двух и третьего события. И так 50 раз. В итоге получим
Проверим для малых количеств: для 4:

, для 6:

.
Cовпадают с простым перебором. Формула верна.