2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2
 
 Re: Стержень на перекладине
Сообщение08.10.2017, 01:49 
Есть в этой задаче несправедливый момент - не дали полю тяжести своё слово сказать. Думаю, надо исправлять:
1) заменим стержень на полый цилиндр с грузом внутри, который подвешен на двух одинаковых пружинах, прикреплённых к основаниям цилиндра. Линейную плотность цилиндра считать постоянной, трение груза о стенки отсутствует. Считать, что груз не может касаться оснований.
2) теплоизолированный невесомый цилиндр в отсутствии внешней атмосферы заполнен идеальным газом, масса молекул известна. В начальный момент система находится в состоянии устойчивого равновесия.

 
 
 
 Re: Стержень на перекладине
Сообщение08.10.2017, 01:55 
Аватара пользователя
lel0lel
А может с картинкой?
Так че то не врубаюсь.

 
 
 
 Re: Стержень на перекладине
Сообщение08.10.2017, 02:09 
fred1996
сейчас что-то нет энтузиазма рисовать. Первый случай в двух словах - это трубка (запаянная с концов) в центре которой шарик на двух пружинках, расположенных вдоль оси трубки. Если платформа не вращается, то устойчивым положением равновесия в поле тяжести является вертикальное положение трубки.

 
 
 
 Re: Стержень на перекладине
Сообщение08.10.2017, 02:54 
Аватара пользователя
lel0lel
Так тут уже будет две собственные частоты для малых колебаний. В обоих случаях, вращается платформа или нет.

 
 
 
 Re: Стержень на перекладине
Сообщение09.10.2017, 01:51 
pogulyat_vyshel в сообщении #1253998 писал(а):
Лагранжиан пишется совершенно стандартно относительно инерциальной системы.
А можно увидеть "официальное" решение?

 
 
 
 Re: Стержень на перекладине
Сообщение09.10.2017, 05:20 
Аватара пользователя
realeugene
Да, интересно. Лично я решал по-школьному.
Просто составил уравнение движения в неинерциальной системе по стандартной схеме, где угловое ускорение пропорционально углу отклонения.
Поскольку сложные вращения по условию запрещены, получилась обычная одномерная система.

 
 
 
 Re: Стержень на перекладине
Сообщение09.10.2017, 09:49 
Аватара пользователя
Кинетическая энергия стержня относительно инерциальной системы имеет вид
$$T=\frac{1}{2}(\boldsymbol\omega,J_S\boldsymbol\omega)+\frac{1}{2}|\boldsymbol v_S|^2$$
Введем декартову систему координат $Sxyz$ пропустив ось $Sx$ через стержень, а ось $Sz$ вдоль перекладины. Пусть $\psi$ -- угол от горизонтальной плоскости до положительного направления оси $Sx$. В этих координатах $J_S=\mathrm{diag}(0,I,I).$

По теореме о сложении угловых скоростей получим
$$\boldsymbol \omega=\Omega(\cos\psi\boldsymbol e_y+\sin\psi\boldsymbol e_x)+\dot\psi\boldsymbol e_z.$$
Итого:
$$L(\psi,\dot\psi)=\frac{1}{2}(\Omega^2I\cos^2\psi+I\dot\psi^2).$$

 
 
 [ Сообщений: 22 ]  На страницу Пред.  1, 2


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group