Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия, Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки
Требуется найти количество неупорядоченных пар взаимно простых, натуральных чисел каждое из которых не превосходит N.
Я так решил, а можно с меньшими вычислениями?
Nikita432472
Re: Количество пар взаимно простых чисел
14.08.2017, 18:13
Сама задача (Ломоносов 9 класс, п. б).
Найдите количество натуральных делителей числа 10^40 не представимых в виде m^n, где m и n — натуральные числа, причём n > 1.
Такого вида будут числа 2^k1*5^k2 , где НОД(k1,k2)=1 , 1<=k1,2<=40 , k1=0 , k2=1 и наоборот.
Andrey A
Re: Количество пар взаимно простых чисел
14.08.2017, 18:43
Последний раз редактировалось Andrey A 14.08.2017, 19:23, всего редактировалось 3 раз(а).
Оформляйте быстрее Latex'ом, а то уволят в карантин. Формула быстрого вычисления есть для суммы в конце поста http://dxdy.ru/post1048178.html#p1048178. Но я не помню как ее выводил. Попробуйте, может найдется подобная и для .