2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу 1, 2  След.
 
 Заряд и проводящая сфера. Траектории движения
Сообщение09.07.2017, 18:08 
Аватара пользователя


09/10/15
4227
где-то на диком Западе. У самого синего моря.
Давненько у нас не было в Олимпиадном разделе свеженьких задачек.
Тут мне пришла на ум одна идейка, которая моментально раздвоилась на пару интересных на мой взгляд задач. Наверное такие задачи где-то когда-то решались, но я пока не встречал. Поэтому заранее прошу прощения за возможный плагиат.
Поскольку сам я еще не начинал решать задачки и ответов не имею - есть только предварительные соображения, то и помещаю обе задачки в этом, а не Олимпиадном разделе в дву ветках. Ну а если они примут олимпиадный вид, можно будет попросить модераторов перенести туда.
Первая попроще, вторая посложнее.
Так что я пока попридержу вторую задачу, пока не разберемся с первой.
Итак, первая задача, разбивающаяся на несколько подзадач.

1. Имеется фиксированная незаряженная сфера малого радиуса $R$. А вокруг нее по некоторой конечной траектории, достаточно удаленной от сферы, летает точечный положительный заряд $Q$ массы $m$
Определить параметры круговой орбиты и типы некруговых орбит близких и не близких к круговым. А так-же рассмотреть задачу рассеяния этого заряда, если он прилетает из бесконечности с заданными скоростью $v_0$ и прицельным параметром $d$.
Поскольку взаимодействие сферы и заряда вполне себе потенциально, задачка должна решаться стандартными методами про центральные силы.
2. Далее можно варьировать задачу на предмет заряда сферы небольшим положительным зарядиком $q$. Так что на дальних подступах заряд и сфера расталкиваются, и уже где-то поближе начинают притягиваться. Не буду вдаваться в подробности различных ограничений. Они сами потом появятся в процессе обсуждения.
Повторю, когда полностью исследуем варианты этой задачки, дам более сложную и интересную.

 Профиль  
                  
 
 Re: Заряд и проводящая сфера. Траектории движения
Сообщение09.07.2017, 23:08 
Заслуженный участник
Аватара пользователя


04/09/14
5255
ФТИ им. Иоффе СПб
Я бы сферу для начала заземлил, а то $-\frac{a}{r^2}$ - зело плохой потенциал.

 Профиль  
                  
 
 Re: Заряд и проводящая сфера. Траектории движения
Сообщение09.07.2017, 23:56 
Аватара пользователя


09/10/15
4227
где-то на диком Западе. У самого синего моря.
Вот если заземлить, тогда и будет как вы написали.

 Профиль  
                  
 
 Re: Заряд и проводящая сфера. Траектории движения
Сообщение10.07.2017, 00:20 
Заслуженный участник
Аватара пользователя


04/09/14
5255
ФТИ им. Иоффе СПб
Если сфера заземлена, то заряд изображения один, а если изолирована, то два. Джексон. Электродинамика, глава 2, параграфы 2,3.

 Профиль  
                  
 
 Re: Заряд и проводящая сфера. Траектории движения
Сообщение10.07.2017, 00:24 
Аватара пользователя


09/10/15
4227
где-то на диком Западе. У самого синего моря.
Вы забыли величину заряда, которая обратно пропорциональна расстоянию от центра сферы
$q=Q\frac{R}{r}$ (метод изображений для сферы)
Короче, в моей постановке потенциал ведет себя как:
$-\frac{\alpha}{r^4}$

 Профиль  
                  
 
 Re: Заряд и проводящая сфера. Траектории движения
Сообщение10.07.2017, 00:28 
Заслуженный участник
Аватара пользователя


04/09/14
5255
ФТИ им. Иоффе СПб
Изолированная сфера эквивалентна диполю, ориентированному на заряд (это Вы могли бы сообразить просто из теоремы Гаусса ;), а заземленная - точечному заряду.

 Профиль  
                  
 
 Re: Заряд и проводящая сфера. Траектории движения
Сообщение10.07.2017, 00:33 
Аватара пользователя


09/10/15
4227
где-то на диком Западе. У самого синего моря.
Вы не учитываете, что диполь не постоянный.
Его момент сам ведет себя как $\frac{1}{r^2}$
Так что с изолированной сферой потенциал $-\frac{\alpha}{r^4}$, а у заземленной $-\frac{\alpha}{r^2}$

 Профиль  
                  
 
 Re: Заряд и проводящая сфера. Траектории движения
Сообщение10.07.2017, 00:48 
Заслуженный участник
Аватара пользователя


04/09/14
5255
ФТИ им. Иоффе СПб
То есть с потенциалом $\frac{1}{r^2}$ наконец согласились. Тогда, в условиях Вашей задачи (радиус мал, орбита почти круговая), можно считать в первом приближении, что частица бегает в этом потенциале. Потенциал, однако, плохой - в нем всяких неустойчивостей некоторое количество. Поэтому я и предложил сферу заземлить, тогда в первом приближении будет Кеплеровская задача, и дети (а Вы, наверно, их имели ввиду, поскольку для "серьёзных людей" эта задачка приводится к диф.уру в один щелчок, а дальше - исследование диф.ура, что скорее математика, а не физика) с ней имеют шанс справиться.

 Профиль  
                  
 
 Re: Заряд и проводящая сфера. Траектории движения
Сообщение10.07.2017, 01:06 
Аватара пользователя


09/10/15
4227
где-то на диком Западе. У самого синего моря.
Я не совсем понимаю, почему потенциал Кеплеровский при заземленной сфере. Кеплеровский - это $\frac{1}{r}$, а не $\frac{1}{r^2}$

И потенциал $\frac{1}{r^4}$ не имеет никаких неустойчивостей.

Я просто предложил идти от простого к сложному.
Сначала посмотреть решение для круговой орбиты, подом для слегка возмущенной, потом для произвольной.
Думаю, что только круговая орбита доступна школьникам.
Насколько мне известно, этот потенциал в общем случае дает незамкнутую траекторию. А какую, я не знаю.

Далее - интересный момент, когда сфера слегка заряжена положительным зарядом. То есть вдалеке конструкция будет расталкиваться, а вблизи притягиваться.

 Профиль  
                  
 
 Re: Заряд и проводящая сфера. Траектории движения
Сообщение10.07.2017, 01:55 
Заслуженный участник
Аватара пользователя


04/09/14
5255
ФТИ им. Иоффе СПб
Да, в уме промахнулся. Для заземлённой сферы - движение в потенциале $-\frac{qa}{r^2}$, для изолированной - $-\frac{2qa^3}{r^4}$. Замкнутых траекторий нет ни в том, ни в другом. IMHO, школьнику не решить, а студенту - скучно. Круговая орбита в обоих потенциалах неустойчива.

 Профиль  
                  
 
 Re: Заряд и проводящая сфера. Траектории движения
Сообщение10.07.2017, 07:29 
Заслуженный участник


28/12/12
7930
amon в сообщении #1232503 писал(а):
Для заземлённой сферы - движение в потенциале $-\frac{qa}{r^2}$, для изолированной - $-\frac{2qa^3}{r^4}$.

Это, видимо, при $r\gg a$. Если не ставить такого условия, получается $-\dfrac{qa}{r^2-a^2}$ и $-\dfrac{qa^3}{r^2(r^2-a^2)}$, соответственно.

 Профиль  
                  
 
 Re: Заряд и проводящая сфера. Траектории движения
Сообщение10.07.2017, 09:00 
Аватара пользователя


09/10/15
4227
где-то на диком Западе. У самого синего моря.
Именно так.
Для изолированной сферы при $r\gg a$ и отрицательной общей энергии можно легко вычислить величину апогея и перигя по заданным угловому моменту и энергии. А вот угол между ними зависит от всех параметров задачи. Его можно получить только численно. Так что в общем случае орбита будет незамкнутой. Хотя, параметры можно подобрать так, чтобы замкнуть траектории.

 Профиль  
                  
 
 Re: Заряд и проводящая сфера. Траектории движения
Сообщение10.07.2017, 09:35 
Заслуженный участник


28/12/12
7930
fred1996 в сообщении #1232520 писал(а):
Для изолированной сферы при $r\gg a$ и отрицательной общей энергии можно легко вычислить величину апогея и перигя по заданным угловому моменту и энергии.

При отрицательной общей энергии в таком потенциале возможно только падение на центр, насколько я понимаю.

 Профиль  
                  
 
 Re: Заряд и проводящая сфера. Траектории движения
Сообщение10.07.2017, 09:57 
Аватара пользователя


09/10/15
4227
где-то на диком Западе. У самого синего моря.
А, ну да, вы правы.
Там получается биквадратное уравнение для точек поворота $r$ и два корня, но между ними не ложбина, а бугор. Значит либо улетает на бесконечность, либо падает на сферу.
Тогда наверное имеет смысл задача рассеяния.

 Профиль  
                  
 
 Re: Заряд и проводящая сфера. Траектории движения
Сообщение10.07.2017, 10:04 
Заслуженный участник


28/12/12
7930
fred1996 в сообщении #1232528 писал(а):
Там получается биквадратное уравнение для точек поворота $r$ и два корня, но между ними не ложбина, а бугор.

При отрицательной общей энергии доступна только яма при малых $r$. Бугор и хвост соответствуют положительной энергии.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 29 ]  На страницу 1, 2  След.

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Ignatovich


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group