2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Частотная зависимость магнитной восприимчивости
Сообщение01.06.2017, 00:21 


02/02/16
24
Здравствуйте. Хочу получить простейшую частотную зависимость для $\chi(\omega)$. В литературе находил ее в форме $\chi(\omega)=\chi_0/(1-j\omega \tau)$, где $\chi_0$ – восприимчивость на нулевой частоте, а $\tau$ – релаксационный параметр. Полагаю, что надо подставить в уравнение Ландау-Лившица $H(t) = H_0 e^{-j\omega t}$ и $M=\chi H$, но что-то ничего не выходит (путает векторная форма уравнения). Подскажите, пожалуйста, может есть где-то вывод. Правда, мне удалось получить искомое выражение, положив $M(t)=M_0(1-e^{-t/\tau})$, то есть, что отклик растет экспоненциально с параметром $\tau$, но, кажется, это как-то спекулятивно, не от основных уравнений.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ 1 сообщение ] 

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group