2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней.
 
 Плоская электромагнитная волна
Сообщение26.04.2017, 19:23 


02/04/17
39
Тут уже спрашивал про это, но не позволяли теме быть на форуме. А вот недавно неожиданно пришла, как это бывает, мысль по решению. Но ответ получается сомнительный. Поэтому прошу помощи.

Задача:
"Плоская электромагнитная волна распространяется в немагнитной среде без потерь с неизвестным значением диэлектрической проницаемости. Измерения показали, что на пути, равном 10 см, колебание с частотой 1 ГГц приобретает дополнительный по сравнению с вакуумом сдвиг по фазе в 40 градусов (0.69 радиан) и затухает по амплитуде в 10 раз. Определить комплексную диэлектрическую проницаемость среды и коэффициент преломления среды."

А вот как я решал:

Волновое число:

$k = \frac{\Delta \varphi}{\Delta l} = \frac{0.69}{0.1} = 6.9$


Фазовая скорость:

$v_{\phi} = \frac{\omega}{k} = \frac{2\pi f}{k} = \frac{2\pi f}{k} = 910144927 $ м/с


Длина волны:

$\lambda = \frac{v_{\phi}}{f} = 0.91$ м


Связь комплексной диэлектрической проницаемости с волновым числом:

$k = \frac{\omega}{c}\sqrt\varepsilon_{r}$


Отсюда выражаем диэлектрическую проницаемость:

$\varepsilon_{r} = (\frac{ck}{2\pi f})^2 = 0.1 $


коэффициент преломления среды:

$n =\sqrt{\varepsilon_{r}\mu} = \sqrt{0.1\cdot1} = 0.32$


Так как сказано что среда без потерь, то тангенс угла потерь равен нулю, и поэтому у комплексной диэлектрической проницаемости остается только действительная часть.
Ну и в общем я в этом сомневаюсь, потому что значение диэлектрической проницаемости получилось маленьким. Ну и коэффициент должен быть больше единицы.
Еще не понял следующее, в условии сказано что амплитуда уменьшилась в 10 раз, однако в моем решении это никак не отражено, вот не понимаю где это учесть.


Также пробовал решать совсем иначе.
Система уравнений двух состояний плоской волны:

$E(t) =E_{m}\cos(\omega t - kz + \varphi_{0})$
$E(t+\Delta t) = \frac{1}{10}E_{m}\cos(\omega (t + \Delta t) - k(z + \Delta l) + \varphi_{0} + \Delta \varphi)$

где:
$t$ - какой-то момент времени

$\Delta t$ - время за которое волна проходит путь $\Delta l$

$\omega$ - угловая частота.

$k$ - волновое число.

$z$ - какая-то начальная координата.

$\Delta l$ - путь на котором происходит сдвиг по фазе (из условия)

$\varphi_{0}$ - начальная фаза.

$\Delta \varphi$ - сдвиг по фазе (из условия)

$E_{m}$ - амплитуда электромагнитной волны.


Однако есть три причины против этого способа:
1. Не понимаю что делать дальше, уже нечего преобразовывать/подставлять и тд.
2. Непонятно как перейти к искомым величинам.
3. Слишком много неизвестных величин ($t$, $\Delta t$, $z$, $\varphi_{0}$, $E_{m}$)


Прошу помощи, с формулами, идеями.
Кому интересно, информацию по второму способу решения брал отсюда:
https://vk.com/doc144957384_443908068?h ... ecc2856c57 (страница 26)

Заранее спасибо!

 Профиль  
                  
 
 Re: Плоская электромагнитная волна
Сообщение26.04.2017, 19:43 
Экс-модератор
Аватара пользователя


23/12/05
12068
 !  Не надо создавать новые темы, если есть такая же в Карантине - правьте ее.
«Распространение электромагнитной волны»

Эту тему закрываю.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней.  [ Сообщений: 2 ] 

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: ESN


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group