2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Stratanovich integral?
Сообщение31.01.2008, 00:17 
I need to compute the following limit in $L^2$


$M_{\triangle_n}=\sum_{i=1}^{n}B(\frac{t_{i-1}+t_i}{2})(B(t_i)-B(t_{i-1}))$

where $B(t)$ is standard Brownian Motion

I tried all kind conditioning, but could not get anything good


Ogromnoe spasibo

 
 
 
 
Сообщение31.01.2008, 12:07 
Аватара пользователя
Bulinskij, Shiryaev. Random theory
стр. 285
$$
\frac{B(t)^2}2-\frac{t}2
$$
And your sum is not right. Instead of
$$
B \left(\frac{t_{i-1}+t_i}{2}\right)
$$
it must be
$$
B \left(t_{i-1}\right)
$$

(I guess you wanna compute stochastic integral
$$
\int\limits_0^t B(s)\,dB(s)
$$

 
 
 
 
Сообщение31.01.2008, 17:55 
I think, everything is correct in my question. The evaluation is exactly at mid-point. Evaluation point is important since we might loose (gain) martingale property of the transform. I thought that mid-point evaluation is Stratanovich integral (not Ito)

Thank you for the reference I will try to read it through.

Spasibo!

 
 
 
 
Сообщение01.02.2008, 10:23 
Аватара пользователя
Ok, sorry. My mistake. I have understood you wrong.

 
 
 
 
Сообщение03.02.2008, 20:10 
Аватара пользователя
I understand that $t_0=0,t_n = T$. Then your sum indeed converges to the Stratonovich integral
$$
\int_0^T B(t)\circ dB(t) = \frac{B^2(T)}2
$$
To prove, you will need the following:
$$Q_{\triangle_n}=\sum_{i=1}^{n}\big(B(t_i)-B(t_{i-1})\big)^2 \to T,\ |\triangle_n|\to 0.$$

 
 
 [ Сообщений: 5 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group