2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Inverse operator and boundness
Сообщение27.01.2008, 06:10 
Problem: In space $C[0,1]$ is defined an operator A as
$A(x(t))=x(t)-\int\limit_0^1 tsx(s) ds ,  $ $  0\leqslant t\leqslant 1$.
It is linear, bound and bjective. Find $A^-^1$ and prove that it is bound too.

From $Ax=y$ is $x(t)=y(t)+C\cdot t$ where is $C=\int_0^1 sx(s) ds$. But I am stuck here, so please help. I need to express $C$ in terms of $s$ and $y(s)$ to find $A^-^1$, but I don`t have an idea how to do it.

 
 
 
 
Сообщение27.01.2008, 10:08 
Find $C$.
Multiply by $t$ and integrate by $[0,1]$.

$\int\limits_0^1 tx(t)\,dt=\int\limits_0^1 ty(t)\,dt+C\int\limits_0^1 t^2\,dt$;
$C=\int\limits_0^1 ty(t)\,dt+\frac{C}{3}$;
$C=\frac{3}{2}\int\limits_0^1 ty(t)\,dt$.

 
 
 
 
Сообщение27.01.2008, 13:18 
Спасибо V.V.

 
 
 [ Сообщений: 3 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group