Привет!
Я довольно потерян при виде вот этой задачи:
Пусть
Доказать, что f тогда и только тогда непрерывно, если для всех
имеет место включение
(
обозначает замыкание множества М)
Я до сих пор бьюсь с такими понятиями как открытое множество, замкнутое множество, компакты, т.е. не над самими понятиями (они мне более менее только сейчас становятся понятными и привычными), а над их применениями в доказательствах. Насколько я знаю, это тематика общей топологии. Не знаю, как вы считаете, нормально ли вести курс анализа в первом семестре почти полностью на языке общей топологии, т.е. обобщая весь анализ и прибегая всюду к высокого уровня абстрактности, которая всем моим однокурсникам, не только мне, кажется излишней?
Может задача и проста. Однако немного пораздумав, я решил решить её под вашим руководством, уж слишком много пунктов на неё, которые из-за неправильных рассуждений можно потерять.
Я хотел бы, чтобы вы задали мне по ходу дела наводящие вопросы, т.е. прошу не решать её за меня.
...Но первый вопрос за мной.
Задача называется "Альтернативное Определение Непрерывности"...С каких это пор в математике доказываются определения???
(...и действительно, например у Архипова и Садовничего в их Лекциях по Матану нашёл почти тоже самое как определение...и конечно без доказательства)