2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 distribution of \int B(t)
Сообщение15.01.2008, 23:11 
Let $B(t)$ be standard Brownian motion. I need to fund distribution of $\int_{0}^{t}B(s)ds$

Ogromnoe spasibo!

 
 
 
 
Сообщение17.01.2008, 09:40 
Аватара пользователя
$N(0,t^2/2)$ if you mean marginal distribution.

 
 
 
 
Сообщение19.01.2008, 00:20 
How did you compute it? Anywhere I should look for the explanations?

 
 
 
 
Сообщение19.01.2008, 22:29 
Аватара пользователя
So, I got $N(0,t^3/3)$.
Really, let $S_n$ - Riemann's integral sum
$$
S_n=\frac{t}{n}\sum\limits_{k=1}^nB(s_k),
$$
where $i_0=0,~s_1=t/n,\dots,s_k=tk/n,\dots,s_n=t$.
Then
$$
DS_n=\frac{t^2}{n^2}\sum\limits_{i,j}r_{ij},
$$
where $r_{ij}=cov(B(s_i),B(s_j))$.
As easy to see
$$
(r_{ij})=\frac{t}{n}\left[\begin{array}{ccccc}
1&1&1&\dots&1\\
1&2&2&\dots&2\\
1&2&3&\dots&3\\
\dots\\
1&2&3&\dots&n
\end{array}\right]
$$
And $S_n$ is gaussian,
$$
DS_n=t^3\left(\frac13+\frac1{2n}+\frac1{6n^2}\right)
$$
At last it is need to prove the convergence $S_n$ in $L^2$.

 
 
 
 
Сообщение23.01.2008, 21:17 
Ogromnoe Spasibo!

And I thought that Riemann integral is obsolete.

One more question: Would $\int_{0}^{t}B(s)ds$ be a martingale? My guess is yes and I kind of can prove it using uniform integrability of Riemann approximation (since bounded in $L^2$ ) and a.s. convergence.

 
 
 
 
Сообщение24.01.2008, 23:15 
Аватара пользователя
I would like to see your ideas about the proof.
As for me, I donk think it is martingale, and that's why.
Let $\sigma$-algebra ${\cal F}_t=\sigma\left\{B(s),s\in(0,t]\right\}$. As easy to suppose
$$
X_t=\int\limits_0^t B(s)\,ds\quad  {\cal F}_t-\mbox{\rm measurable}
$$
Let $0<p<t$, and for all $n$ let $k(n)\in\mathbb{N}$ such that
$$
s_{k(n)}\leqslant p<s_{k(n)+1}
$$
Then (as I think)
$$
\mathbb{M}\left(S_n(t)|{\cal F}_p\right)=\frac{t}{n}
\sum\limits_{k=1}^{k(n)}B(s_k)+\frac{t}{n}(n-k(n))B(p)\to X_p+(t-p)B(p)
$$
It's not a proof, it's just something like idea.

 
 
 
 
Сообщение27.01.2008, 00:25 
You are totally right! It will not be a martingale! I agree with your computations.

(Got too excited interchanging conditional expectation and limit and forgot about everything else)

 
 
 
 
Сообщение28.01.2008, 23:25 
Аватара пользователя
Yes, I messed somewhat. Actually, one can use integration by parts:
$$
\int_{0}^{t}B(s)ds = tB(t) - \int_0^t s dB(s)
$$
and then
$$
E\left[tB(t) - \int_0^t s dB(s)\right]^2 = t^3  + \int_0^t s^2 ds - 2t\int_0^t s ds = \frac{t^3}{3}. 
$$
(we use that
$$E\left[\int_0^t f(s)dB(s)\int_0^t g(s)dB(s)\right] = \int_0^tE[f(s)g(s)]ds$$
for adapted -- and non-random is adapted :) -- processes $f$, $g$).

 
 
 [ Сообщений: 8 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group