2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 BMO shortlist 2011
Сообщение02.01.2017, 14:37 
Let $ABCD$ be a cyclic quadrilateral such that the lines $BC$ and $AD$ intersect in $P$.Let $Q $ be a point on line $BP$,different from $B$,such that $BP=PQ$.
Consider the parallelograms $CAQR$ and $DBCS$.
Prove that the points $C,Q,R,S$ all lie on the same circle.

 
 
 
 Re: BMO shortlist 2011
Сообщение04.01.2017, 13:25 
ghenghea в сообщении #1181413 писал(а):
Let $ABCD$ be a cyclic quadrilateral such that the lines $BC$ and $AD$ intersect in $P$.Let $Q $ be a point on line $BP$,different from $B$,such that $BP=PQ$.
Consider the parallelograms $CAQR$ and $DBCS$.
Prove that the points $C,Q,R,S$ all lie on the same circle.


Изображение

$AP=PA_1\ ,\ CP=PC_1 \Rightarrow BDC_1A_1- cyclic$

$\overrightarrow{BC}=\overrightarrow{DS}=\overrightarrow{C_1Q}=\overrightarrow{A_1R}$

 
 
 [ Сообщений: 2 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group