Последний раз редактировалось ashubert 26.12.2016, 01:56, всего редактировалось 7 раз(а).
В первой ссылке: парадокс Зенона знаком именно в приведенной выше формулировке (ее иногда называют дихотомией — от греч. dichotomia «разделение надвое»). Чтобы пересечь комнату, сначала нужно преодолеть половину пути. Но затем нужно преодолеть половину того, что осталось, затем половину того, что осталось после этого, и так далее. Это деление пополам будет продолжаться до бесконечности, из чего делается вывод, что вам никогда не удастся пересечь комнату.
Если подставить вместо "пересечь комнату" - "причалить" - то получится нам никогда не удастся "причалить".
Однако парадокс Зенона имеет математическое "решение" (Действительно, в каждой точке пути вам надо пройти половину оставшегося пути, но только на это вам понадобится в два раза меньше времени. Чем меньший путь осталось пройти, тем меньше времени на это понадобится. Таким образом, вычисляя время, нужное для того, чтобы пересечь комнату, мы складываем бесконечное число бесконечно малых интервалов. Однако сумма всех этих интервалов не бесконечна (иначе пересечь комнату было бы невозможно), а равна некоторому конечному числу — и поэтому мы можем пересечь комнату за конечное время
...Но хотя и расстояние, и время уменьшаются (и в конечном счете стремятся к нулю), их отношение может быть конечным — собственно, это и есть скорость вашего движения. Когда и расстояние, и время стремятся к нулю, это отношение называется пределом скорости. В своем парадоксе Зенон ошибочно исходит из того, что, когда расстояние стремится к нулю, время остается прежним.),
тогда как с этим согласуется текст В. Арнольда (Замечу, впрочем, что та же теорема единственности объясняет, почему заключительный этап швартовки корабля к пристани проводится вручную: при управлении, когда скорость причаливания определяется как гладкая (линейная) функция от расстояния, для причаливания потребовалось бы бесконечное время.)?
|