2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3
 
 Re: Диф. уравнение в частных производных с дельта-функцией.
Сообщение31.10.2016, 16:08 
Аватара пользователя
Munin в сообщении #1164528 писал(а):
В общем, я рассказал как есть. И хотелось бы услышать, чего математика на эту тему думает.

За всю математику не скажу, но я лично ничего не думаю, поскольку в теории квантовых полей не копенгаген. Впрочем, нет, думаю: что сформулированная Вами задача гораздо сложнее чем просто Шрёдингер.

 
 
 
 Re: Диф. уравнение в частных производных с дельта-функцией.
Сообщение31.10.2016, 20:13 
Аватара пользователя
То, что я тут сказал, пока ещё не теория квантовых полей. Это скорее теория классического поля.

 
 
 
 Re: Диф. уравнение в частных производных с дельта-функцией.
Сообщение31.10.2016, 20:18 
Аватара пользователя
Munin в сообщении #1164746 писал(а):
То, что я тут сказал, пока ещё не теория квантовых полей. Это скорее теория классического поля.

Munin в сообщении #1164528 писал(а):
Но его, сам по себе, можно представить себе как результат излучения неких частиц (виртуальных фотонов) из точечного источника.

В любом случае там есть неизвестное количество виртуальных частиц ...

 
 
 
 Re: Диф. уравнение в частных производных с дельта-функцией.
Сообщение31.10.2016, 20:34 
Аватара пользователя
Red_Herring в сообщении #1164711 писал(а):
сформулированная Вами задача гораздо сложнее чем просто Шрёдингер.
Можно тоже дурацкий вопрос? В "моих" науках $\delta$-потенциал (именуемый, что бы народ не пугать, потенциалом нулевого радиуса) возникает проще. Есть эффективный гамильтониан свободной частицы в кристалле $H_0$. Штука сама по себе достаточно сложная и как правило матричная (волновая функция имеет много компонент, соответствующих носителям в разных зонах). Есть короткодействующий (в том смысле, что на расстояниях порядка постоянной решетки он умирает в ноль) потенциал $V$. Хочу узнать что-нибудь про основное связанное состояние, в каком-то процессе, происходящим с этим состоянием там, где этого потенциала давно нет. Тогда, вместо того, что бы мучаться со спектральной задачей, я схожу к соседу-экспериментатору и спрошу у него энергию этого основного состояния $E_0$. После этого вместо спектральной задачи $(H_0+V)\Psi=E\Psi$ я быстренько решу (например, преобразованием Фурье) другую задачу $(H_0-E_0)\Psi=\delta(\mathbf{r})$, и обратным преобразование Фурье получу то, что я назову асимптотикой волновой функции на больших расстояниях. Такое не раз проделывалось и с успехом.

Мой вопрос математикам. Когда такая процедура соврёт, т.е. не даст результата похожего на "настоящую с.ф." в области, где $V=0$ (пусть для простоты потенциал финитный, что бы еще и с его асимптотиками не возиться)?

 
 
 
 Re: Диф. уравнение в частных производных с дельта-функцией.
Сообщение31.10.2016, 20:51 
Аватара пользователя
Red_Herring в сообщении #1164749 писал(а):
В любом случае там есть неизвестное количество виртуальных частиц ...

Это вас пусть не колышет, вопрос в рамках другой, более простой модели.

-- 31.10.2016 20:57:51 --

Плюсую к вопросу amon. Это почти то же, что спрашивал и я.

 
 
 
 Re: Диф. уравнение в частных производных с дельта-функцией.
Сообщение31.10.2016, 21:26 
Аватара пользователя
Быстрый ответ: не знаю. Надо думать

 
 
 
 Re: Диф. уравнение в частных производных с дельта-функцией.
Сообщение31.10.2016, 22:03 
Аватара пользователя
Спасибо!

 
 
 [ Сообщений: 37 ]  На страницу Пред.  1, 2, 3


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group