2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2
 
 
Сообщение06.01.2008, 18:27 
Что значит $n\to 0$?

А ряд $$\sum_{n=1}^\infty \frac{1}{n}$$ расходится, да.

 
 
 
 
Сообщение06.01.2008, 18:38 
Аватара пользователя
Видимо, имелся в виду ряд $\sum\limits_{k=1}^{\infty}\frac 1x$ при $x\to 0$ (все привыкли, что $n$ по умолчанию обозначает целое или натуральное число, хотя это, конечно, не обязательно). Только тут слагаемые не бесконечно малые, а бесконечно большие. Но при $x\to\infty$ они будут бесконечно малыми. Однако ряд всё равно расходится при всех $x\neq 0$ (а при $x=0$ его члены не определены).

 
 
 
 
Сообщение06.01.2008, 18:58 
Gordmit писал(а):
Что значит $n\to 0$?

А ряд $$\sum_{n=1}^\infty \frac{1}{n}$$ расходится, да.

Описался. Конечно же $n\to \infty \ $

 
 
 
 
Сообщение06.01.2008, 19:11 
Roll писал(а):
Описался. Конечно же $n\to \infty \ $
А жаль. Версия Someone была очень похожа на правду! :( :D

Если Вы пишете ряд $\sum\limits_{n=1}^\infty\frac{1}{n}$, то ничего в духе $n\to\infty$ писать не нужно; здесь $n$ всего лишь переменная суммирования, а не аргумент какой-либо функции.

 
 
 
 
Сообщение06.01.2008, 20:10 
Gordmit писал(а):
Roll писал(а):
Описался. Конечно же $n\to \infty \ $
А жаль. Версия Someone была очень похожа на правду! :( :D

Если Вы пишете ряд $\sum\limits_{n=1}^\infty\frac{1}{n}$, то ничего в духе $n\to\infty$ писать не нужно; здесь $n$ всего лишь переменная суммирования, а не аргумент какой-либо функции.


На самом деле я имел ввиду ряд
$\sum\limits_{j=1}^\infty\frac{1}{n}$ (имеется ввиду, что берется бесконечное количество слагаемых 1/n) , который вообще говоря, не тождественен ряду $\sum\limits_{n=1}^\infty\frac{1}{n}$. Или это одно и то же ?

И разве

$$\lim_{n\to \infty}\frac{1}{n}*\lim_{n\to \infty}{n} = \lim_{n\to \infty}\sum\limits_{}^n\frac{1}{n}$$ ?

а так как

$$\lim_{n\to \infty}\frac{1}{n}*\lim_{n\to \infty}{n} = \lim_{n\to \infty}\frac{n}{n} = 1 $$.

, то и

$$\lim_{n\to \infty}\sum\limits_{}^n\frac{1}{n} = 1$$

 
 
 
 
Сообщение06.01.2008, 20:29 
Roll писал(а):
Gordmit писал(а):
Roll писал(а):
Описался. Конечно же $n\to \infty \ $
А жаль. Версия Someone была очень похожа на правду! :( :D

Если Вы пишете ряд $\sum\limits_{n=1}^\infty\frac{1}{n}$, то ничего в духе $n\to\infty$ писать не нужно; здесь $n$ всего лишь переменная суммирования, а не аргумент какой-либо функции.


На самом деле я имел ввиду ряд
$\sum\limits_{j=1}^\infty\frac{1}{n}$ (имеется ввиду, что берется бесконечное количество слагаемых 1/n) , который вообще говоря, не тождественен ряду $\sum\limits_{n=1}^\infty\frac{1}{n}$. Или это одно и то же ?

Ага, похоже, что версия Someone подтверждается :) Нет, не одно и то же. Но оба, конечно, расходятся. У первого из них даже общий член не стремится к 0 при $j\to\infty$.
Roll писал(а):
И разве

$$\lim_{n\to \infty}\frac{1}{n}*\lim_{n\to \infty}{n} = \lim_{n\to \infty}\sum\limits_{}^n\frac{1}{n}$$ ?

а так как

$$\lim_{n\to \infty}\frac{1}{n}*\lim_{n\to \infty}{n} = \lim_{n\to \infty}\frac{n}{n} = 1 $$.

, то и

$$\lim_{n\to \infty}\sum\limits_{}^n\frac{1}{n} = 1$$
Здесь я уже вообще ничего не понимаю... :cry:

 
 
 
 
Сообщение07.01.2008, 08:19 
Аватара пользователя
:evil:
Roll писал(а):
Сумма бесконечного числа бесконечно малых не есть бесконечно малая только когда эта сумма - функциональный ряд ?

Сумма бесконечного числа "одной и той же" бесконечно малой всегда бесконечно малая ?

Мне кажется, источником Ваших трудностей является неправильное понимание терминов. Отчасти в этом виноваты исторически сложившиеся названия, не отражающие современной формализации.

Бесконечно малая величина — это не величина, то есть не число (за исключением нестандартного анализа). Это всегда функция. (Последовательность — это функция, заданная на множестве натуральных чисел.) Бесконечно малой величина называется, если предел функции равен нулю.

Что такое сумма бесконечного числа величин, это вопрос ещё более мутный. Самый простой случай — это ряд. Сумма ряда — это предел последовательности частичных сумм.

Совмещая эти два определения, мы получаем: сумма бесконечного числа бесконечно малых — это всегда предел частичных сумм функционального ряда.

 
 
 
 
Сообщение07.01.2008, 14:04 
незваный гость, спасибо за разъяснения !

Добавлено спустя 37 минут 10 секунд:

Gordmit писал(а):
Roll писал(а):
И разве

$$\lim_{n\to \infty}\frac{1}{n}*\lim_{n\to \infty}{n} = \lim_{n\to \infty}\sum\limits_{}^n\frac{1}{n}$$ ?

а так как

$$\lim_{n\to \infty}\frac{1}{n}*\lim_{n\to \infty}{n} = \lim_{n\to \infty}\frac{n}{n} = 1 $$.

, то и

$$\lim_{n\to \infty}\sum\limits_{}^n\frac{1}{n} = 1$$
Здесь я уже вообще ничего не понимаю... :cry:


Вы писали, что ряд $$\sum\limits_{}^n\frac{1}{n} при $n\to\infty$ расходится, а значит $$\lim_{n\to \infty}\sum\limits_{}^n\frac{1}{n} не существует.
Но разве $$\lim_{n\to \infty}\sum\limits_{}^n\frac{1}{n}  \neq \lim_{n\to \infty}\frac{n}{n} $$ ?

 
 
 
 
Сообщение07.01.2008, 15:11 
Roll писал(а):
Вы писали, что ряд $$\sum\limits_{}^n\frac{1}{n} при $n\to\infty$ расходится, а значит $$\lim_{n\to \infty}\sum\limits_{}^n\frac{1}{n} не существует.

Нет, я писал, что расходится ряд $$\sum_{n=1}^\infty\frac{1}{n}$$, а также $$\sum_{k=1}^\infty\frac{1}{n}$$. А Ваша сумма $$\sum\limits_{}^n\frac{1}{n}$$ (если я правильно Вас понял и под ней подразумевается $$\sum\limits_{k=1}^n\frac{1}{n}$$) - просто конечная сумма, равная 1 при всех $n$. К тем двум рядам она не имеет никакого отношения.

 
 
 
 
Сообщение07.01.2008, 15:37 
Gordmit писал(а):
Roll писал(а):
Вы писали, что ряд $$\sum\limits_{}^n\frac{1}{n} при $n\to\infty$ расходится, а значит $$\lim_{n\to \infty}\sum\limits_{}^n\frac{1}{n} не существует.

Нет, я писал, что расходится ряд $$\sum_{n=1}^\infty\frac{1}{n}$$, а также $$\sum_{k=1}^\infty\frac{1}{n}$$. А Ваша сумма $$\sum\limits_{}^n\frac{1}{n}$$ (если я правильно Вас понял и под ней подразумевается $$\sum\limits_{k=1}^n\frac{1}{n}$$) - просто конечная сумма, равная 1 при всех $n$. К тем двум рядам она не имеет никакого отношения.


Спсибо. Кажется понял :D

 
 
 
 
Сообщение08.01.2008, 01:10 
Аватара пользователя
Offtopic :oops:

Как у вас тут весело и задорно-то..

 
 
 [ Сообщений: 26 ]  На страницу Пред.  1, 2


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group