2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Brownian Motion: Distribution of B(t)+B(s)?
Сообщение03.01.2008, 00:35 
B(r) is a Brownian Motion. For fixed t and s find distribution of B(t)+B(s)?

Where should I look for solutions of similar problems?

Spasibo!

 
 
 
 
Сообщение03.01.2008, 01:11 
Аватара пользователя
Just use the fact that vector $\left(B(s),B(t)\right)$ is gaussian with well-known matrix of covariations.

 
 
 
 
Сообщение03.01.2008, 19:13 
Ogromnoe Spasibo!

So I guess the solution would look like $X:=B(t)+B(s)\quad P(X\leq \alpha)= \int_{-\infty}^{\alpha}\int_{-\infty}^{\alpha-x}f(x,y)dydx$ where $f(x,y)$ is a joint pdf.

Would it be possible to compute pdf for $X$ explicitly (given the joint pdf of BM is not very nice)?

 
 
 
 
Сообщение03.01.2008, 20:38 
Аватара пользователя
Let $t<s$. Then $B(s)=B(t)+\Delta_{ts}$, where $B(t)$ and $\Delta_{ts}$ are independent gaussian variables with zero mean and known covariance. Then $B(s)+B(t)=2B(t)+\Delta_{ts}$. Like any other linear combination of independent gaussian variables this variable also has gaussian distribution. Parameters of this distribution can be easily calculated using the known properties of mean and covariance.

 
 
 
 
Сообщение03.01.2008, 23:59 
Da... Velikolepnoe reshenie! Spasibo

 
 
 [ Сообщений: 5 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group