RIP писал(а):
Для
обозначим
Доказать равенство следующих формальных степенных рядов от
:
Во-первых, непосредственно из определения следует:
Во-вторых, разложим
на "простейшие":
Таким образом, требуемое тождество переписывается в виде:
или, делая замену
и сокращая на
:
Берем коэффициенты при
и сокращем на
:
Для дальнейшего немного обобщим известные
формулы (10) и (13) для чисел Стирлинга 2-го рода, а именно вычислим:
Чтобы вычислить левую часть (*), полагаем
и
:
Чтобы вычислить правую часть (*), полагаем
и
:
А так как
то правая часть получается равной:
что совпадает с левой частью.
Кстати, попутно мы также доказали, что экспоненциальная производящая функция коэффициентов исходных рядов равна