А вот ещё иногда переходят к комплексным амплитудам. Тогда
заменяют на
, а в конце отбрасывают мнимую часть. далее временную экспоненту не учитывают, а усреднение по времени заменяют модулем амплидуды, делённым на 2. Вот эта самая комплексная амлитуда как-то связана с фурье-амплитудой (она тоже получается комплексной) или это мне кажется?
Если у вас
не зависит от времени, то нет никакого смысла ни в ряд Фурье разлагать, ни преобразование Фурье делать: функция-то гармоническая, частота одна! Поэтому что с ней ни делай, ничего нового о ней не узнаешь: её ряд Фурье будет состоять из 2 членов (для её частоты и противоположной по знаку -- просто используйте формулу
), а преобразование Фурье -- из 2
-функций (для тех же 2 частот).
Именно поэтому наша тема довольно странная: я написал, конечно, про равенство Парсеваля, но на самом деле усреднение по периоду через разложение по частотам в вашем случае легко получается и без высшей математики: Записываете каждую гармонику в виде состоящего из 2 членов "комплексного ряда Фурье", раскрываете скобки в их произведении и интегрируете по периоду (учитывая тот факт, что произведение гармоник разных частот при интегрировании по общему периоду зануляется).
Соответственно ничего нового не получится и с амплитудой: ваша функция
уже записана в виде вещественного ряда Фурье из 1 члена.
Это все понятно. Я имел ввиду, что когда берут разложение в ряд фурье, то когда находят
и
(коэффициенты по
) то интегрируют по периоду (для периодических функций). А в преобразовании фурье от бесконечности до бесконечности. И сумма заменяется интегралом, но получается, что разницы в этом нет?
Вы что имеете в виду? Разница есть, конечно.
Может быть, что частотный спектр функции
дискретен (в частности если сигнал периодический и достаточно хороший, например кусочно гладкий: тогда спектр состоит из частот, целочисленно кратных
). А может быть, что частотный спектр сигнала
непрерывен, то есть заполняет сплошь какой-то интервал частот. Для гармоник спектр состоит из 2 (или менее) точек.
Ещё если вас интересует математика, там могут быть всякие хитрые проблемы с областью определения: в ряд Фурье можно разлагать периодические непрерывные кусочно гладкие функции (это условие можно ослабить), преобразование Фурье хорошо работает для быстро убывающих бесконечно гладких функций (а в других случаях может привести к обобщённым функциям и другим странностям).