2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 P(x,y)
Сообщение28.07.2016, 08:36 
Find all Symmetric Polynomials $P(x,y)$ such that $ P(x,y)=P(x,x-y)$.

 
 
 
 Re: P(x,y)
Сообщение28.07.2016, 15:35 
Аватара пользователя
Well, "symmetric" means that $(x,y)\mapsto(y,x)$. Your condition means that $(x,y)\mapsto(x,x-y)$. Now let's take all combinations of these two (they happen to generate a dihedral group of order 12) and get to the result.
Let $Q(x,y)$ be any polynomial; then $$\begin{align}Q(x, y) + Q(x, x - y) + Q(y, x) + Q(x - y, x) + Q(y, -x + y) + Q(x - y, -y) +\\+ Q(-x + y, y) + Q(-y, x - y) + Q(-x + y, -x) + Q(-x, -x + y) + Q(-y, -x) + Q(-x, -y)\end{align}$$ is your $P(x,y)$. The obvious implications as to the degree of $P$ I leave to yourself.

$x^2-xy+y^2$ seems to be the "simplest" non-trivial example in some sense.

 
 
 [ Сообщений: 2 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group