Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия, Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки
Let , , , , , are the areas of the six triangles, formed by a triangle's cevians. Find , , in terms of , , .
DeBill
Re: A geometry problem - might be an open one
04.05.2016, 23:53
Нумеруя треугольники по кругу, начиная от вершины, цифрами 1...6, получим три равенства, типа ... Три гиперболических параболоида. Не решается... Есть, конечно, два красивых соотношения: , и , да толку то...
ins-
Re: A geometry problem - might be an open one
05.05.2016, 01:10
Последний раз редактировалось ins- 05.05.2016, 01:14, всего редактировалось 2 раз(а).
if the triangle is and cevians are , , with intersection point from this equality one more relationship between the areas can be found. There are two more similar relations between the cevians. Thus we can find 3-4 equations with 6 variables. The 3 variables are defined in terms of other 3 but I suppose it is not an easy problem, if even solvable, because I found this one: http://www.qbyte.org/puzzles/p002s.html, one similar Sangaku problem and https://en.wikipedia.org/wiki/Routh%27s_theorem, but for this one - nothing. If we find the area of in terms of , , the problem is solved. Another open problem is - if is the triangle equilateral?
ins-
Re: A geometry problem - might be an open one
05.05.2016, 10:48
Последний раз редактировалось ins- 05.05.2016, 10:48, всего редактировалось 1 раз.
The answer of last question is obvious - if the three cevians are medians - , so the triangle is not always equilateral.