2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 An easy but nice geometry problem
Сообщение19.04.2016, 15:46 
Аватара пользователя
Prove that for a right-angled triangle $ABC$ ($\angle{C}=90^o$) with exradii $r_a$, $r_b$, $r_c$ the following equality is correct: $(r_a-r_c)^2+(r_b-r_c)^2=(r_a+r_b)^2$.

 
 
 
 Re: An easy but nice geometry problem
Сообщение19.04.2016, 21:49 
ins- в сообщении #1116634 писал(а):
Prove that for a right-angled triangle $ABC$ ($\angle{C}=90^o$) with exradii $r_a$, $r_b$, $r_c$ the following equality is correct: $(r_a-r_c)^2+(r_b-r_c)^2=(r_a+r_b)^2$.


Изображение

$$R_b=CL=AP, R_a=CQ=PB,   R_a+R_b=AB$$

$$R_c-R_b=ML=LA+AN=CK+PB=CZ+ZB=CB$$

$$R_c-R_a=XQ=QB+BN=CZ+AP=CK+AK=AC$$

$$AC^2+BC^2=AB^2 )))$$$

 
 
 
 Re: An easy but nice geometry problem
Сообщение19.04.2016, 23:10 
Аватара пользователя
The reverse statement is also correct. It is true that a triangle is right-angled iff $r_ar_b=rr_c$. http://forumgeom.fau.edu/FG2006volume6/FG200639.pdf here are interesting statements on this subject.

 
 
 [ Сообщений: 3 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group