Здравствуйте!
В книге Самарского А.А. "Теория разностных схем" (1989) на стр. 109 имеется следующая лемма:
Лемма 3. Для всякой функции
![$y(x)$ $y(x)$](https://dxdy-03.korotkov.co.uk/f/a/a/2/aa2594ca75000ea2e1b07459b7ce3ca882.png)
, заданной на равномерной сетке
![$\bar{\omega}_{h}=\left\{ x_{i}=ih,\,\, i=0,1,...,N,\,\, x_{0}=0,\, x_{N}=l\right\} $ $\bar{\omega}_{h}=\left\{ x_{i}=ih,\,\, i=0,1,...,N,\,\, x_{0}=0,\, x_{N}=l\right\} $](https://dxdy-01.korotkov.co.uk/f/4/d/8/4d8295c09d9d5c3212432c0ce693b7db82.png)
и обращающейся в нуль при
![$x=0$ $x=0$](https://dxdy-01.korotkov.co.uk/f/8/4/3/8436d02a042a1eec745015a5801fc1a082.png)
и
![$x=l$ $x=l$](https://dxdy-02.korotkov.co.uk/f/1/3/e/13e7dd8028cd3a36f7aaa5414b7e401582.png)
, справедливы оценки
![$\frac{h^{2}}{4}\left|\left|y_{\overline{x}}\right]\right|^{2}\leq\left\Vert y\right\Vert ^{2}\leq\frac{l^{2}}{8}\left|\left|y_{\overline{x}}\right]\right|^{2}$ $\frac{h^{2}}{4}\left|\left|y_{\overline{x}}\right]\right|^{2}\leq\left\Vert y\right\Vert ^{2}\leq\frac{l^{2}}{8}\left|\left|y_{\overline{x}}\right]\right|^{2}$](https://dxdy-01.korotkov.co.uk/f/0/b/1/0b14da5e2ab4ba4de47dfeb8f9d064e782.png)
.
Вопрос: существуют ли подобные неравенства для сеточных функций, производная которых в
![$x=0$ $x=0$](https://dxdy-01.korotkov.co.uk/f/8/4/3/8436d02a042a1eec745015a5801fc1a082.png)
и
![$x=l$ $x=l$](https://dxdy-02.korotkov.co.uk/f/1/3/e/13e7dd8028cd3a36f7aaa5414b7e401582.png)
равна нулю?
Попытался получить оценку по аналогии, разложив функцию
![$y(x)$ $y(x)$](https://dxdy-03.korotkov.co.uk/f/a/a/2/aa2594ca75000ea2e1b07459b7ce3ca882.png)
по собственным функциям задачи
![$u^{\prime\prime}+\lambda u=0,\,\,\,\, x\in\left(0,l\right),\,\,\,\,\, u^{\prime}\left(0\right)=u^{\prime}\left(l\right)=0$ $u^{\prime\prime}+\lambda u=0,\,\,\,\, x\in\left(0,l\right),\,\,\,\,\, u^{\prime}\left(0\right)=u^{\prime}\left(l\right)=0$](https://dxdy-03.korotkov.co.uk/f/6/7/c/67c2db10ea92d8e4e5a856e6bfe4493582.png)
(стр. 104):
![$y\left(x\right)=\sum_{k=0}^{N}c_{k}\mu^{\left(k\right)}\left(x\right)$ $y\left(x\right)=\sum_{k=0}^{N}c_{k}\mu^{\left(k\right)}\left(x\right)$](https://dxdy-01.korotkov.co.uk/f/0/b/c/0bc3f74b3b6a53c0ca15303c0f1b204982.png)
, где
![$c_{k}=\left[y\left(x\right),\,\mu^{\left(k\right)}\left(x\right)\right]$ $c_{k}=\left[y\left(x\right),\,\mu^{\left(k\right)}\left(x\right)\right]$](https://dxdy-01.korotkov.co.uk/f/8/c/9/8c971e6802391de6770ace1a89d7036b82.png)
,
![$\left\Vert y\right\Vert ^{2}=\sum_{k=0}^{N}c_{k}^{2}$ $\left\Vert y\right\Vert ^{2}=\sum_{k=0}^{N}c_{k}^{2}$](https://dxdy-01.korotkov.co.uk/f/0/5/e/05ef5c7f22fc6ee38d5e7ee890f3bdf182.png)
,
![$\left[y,\, v\right]=\sum_{i=1}^{N-1}y_{i}v_{i}h+0.5h\left(y_{0}v_{0}+y_{N}v_{N}\right)$ $\left[y,\, v\right]=\sum_{i=1}^{N-1}y_{i}v_{i}h+0.5h\left(y_{0}v_{0}+y_{N}v_{N}\right)$](https://dxdy-01.korotkov.co.uk/f/c/e/c/cecec0e78cb1e66d1b9bea1828797e2282.png)
.
Повторяя доказательство, изложенное для леммы 3, прихожу к неравенству
![$\lambda_{0}\left\Vert y\right\Vert ^{2}\leq\left\Vert y_{\overline{x}}\right\Vert ^{2}\leq\lambda_{N}\left\Vert y\right\Vert ^{2}$ $\lambda_{0}\left\Vert y\right\Vert ^{2}\leq\left\Vert y_{\overline{x}}\right\Vert ^{2}\leq\lambda_{N}\left\Vert y\right\Vert ^{2}$](https://dxdy-02.korotkov.co.uk/f/9/6/c/96c046b907b1e6eb80142fd5c518c76582.png)
, где
![$\lambda_{0}=0,\,\,\,\,\lambda_{k}=\frac{4}{h^{2}}\sin^{2}\frac{\pi kh}{2l},\,\,\,\, k=1,\,2,\,...,\, N$ $\lambda_{0}=0,\,\,\,\,\lambda_{k}=\frac{4}{h^{2}}\sin^{2}\frac{\pi kh}{2l},\,\,\,\, k=1,\,2,\,...,\, N$](https://dxdy-02.korotkov.co.uk/f/5/7/1/571040fa352eb9262516361afed192c582.png)
(стр. 106).
Откуда
![$0\leq\left\Vert y_{\overline{x}}\right\Vert ^{2}\leq\frac{4}{h^{2}}\left\Vert y\right\Vert ^{2}$ $0\leq\left\Vert y_{\overline{x}}\right\Vert ^{2}\leq\frac{4}{h^{2}}\left\Vert y\right\Vert ^{2}$](https://dxdy-01.korotkov.co.uk/f/0/2/4/024a071a4e1e69f8678f40458f76df3682.png)
, т.е. получаю только оценку снизу:
![$\left\Vert y\right\Vert ^{2}\geq\frac{h^{2}}{4}\left\Vert y_{\overline{x}}\right\Vert ^{2}$ $\left\Vert y\right\Vert ^{2}\geq\frac{h^{2}}{4}\left\Vert y_{\overline{x}}\right\Vert ^{2}$](https://dxdy-04.korotkov.co.uk/f/3/8/a/38aac1a13d2a67d1dd5d8c3ac2c1638782.png)
.
Можно ли получить оценку для
![$\left\Vert y\right\Vert ^{2}$ $\left\Vert y\right\Vert ^{2}$](https://dxdy-03.korotkov.co.uk/f/e/d/b/edbd99c78e39e5ad7ed430ceae08a7bd82.png)
сверху?