2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 A proof to an old inequality
Сообщение03.04.2016, 22:37 
Аватара пользователя
Let $a$, $b$, $c$ are positive reals such that $abc=1$. Prove that $\frac{a^2}{b^2+c}+\frac{b^2}{c^2+a}+\frac{c^2}{a^2+b} \ge \frac{a}{b+c^2}+\frac{b}{c+a^2}+\frac{c}{a+b^2}$.

It is an old problem that was proven with computer using Buffalo way, after arqady observed it is applicable. Later I saw an attempt to be solved that I cannot understand (it is below). Can someone explain it?

\[\sum_{cyc}\frac{x^2}{y^2+z} \geq  \frac{(x^2+y^2+z^2)^2}{\sum_{cyc} x^2y^2+x^2z} \geq\sum_{cyc} \frac{x}{y+z^2}\

 
 
 
 Re: A proof to an old inequality
Сообщение05.04.2016, 14:47 
Ваше неравенство очень тонкое и, скорее всего, предложенное решение (правое неравенство) неверно. Вечером скажу точно.
Даже если правое неравенство и верно, его всё равно надо как-то доказывать. То бишь, снова упираемся в BW.

 
 
 
 Re: A proof to an old inequality
Сообщение05.04.2016, 21:07 
Проверил. Правое неравенство верно. Красивое доказательство не вижу.

 
 
 
 Re: A proof to an old inequality
Сообщение05.04.2016, 21:34 
Аватара пользователя
Thank you very much for the time and effort dedicated to this problem. Probably something different than BW can be discovered, but it is definitely not obvious at all. I suppose, it is hard to find even the chain of inequalities that I posted. It wasn't my discovery.

 
 
 
 Re: A proof to an old inequality
Сообщение05.04.2016, 21:59 
Интересный вопрос: из упомянутого в начале этой темы "старого" неравенства можно ухитриться вывести неравенство из этой темы:
topic106575.html

 
 
 
 Re: A proof to an old inequality
Сообщение05.04.2016, 22:26 
Аватара пользователя
It is also very interesting and I started feeling myself like a blind, I cannot see it again. As I'm understanding you - it means the inequality I posted is stronger than the inequality from the link you posted. There is one problem - I'm not sure which one is harder to be proven.

About the left part of the chain I posted - it is easy to be proven. Nominator and denominator of the first fraction are multiplied by $x^2$. Similar operation is done for the other fractions. Then - Cauchy-Schwartz in Engel form. It remains the right part to be proven and the inequality is done.

 
 
 
 Re: A proof to an old inequality
Сообщение06.04.2016, 08:15 
Аватара пользователя
ins- как вы доказываете это неравенство с помощью BW ?

 
 
 
 Re: A proof to an old inequality
Сообщение06.04.2016, 10:25 
Аватара пользователя
You can see the proof here: http://artofproblemsolving.com/communit ... 84p3514260 it is not obvious, even with using a computer.

 
 
 
 Re: A proof to an old inequality
Сообщение14.04.2016, 03:16 
Аватара пользователя
Not a complete solution at all, but might be of some interest: taking $a=b$ one gets
$LHS-RHS=\frac {(a-1)^2} {a^5(a^5+1)(a^4+1)} P_{13}^+$,
where $P_{13}^+$ is a $13^{th}$ degree polynomial with all positive coefficients; it can be found w/o computer, as it is just $a^{14}+a^{13}+a^{10}-a^9+a^8-a^5-a^4-1$ divided by its easily seen divisor $(a-1)$. Now the hard part is to show that $a=b$ is the only extremum, not sure is there any natural way to complete this...

 
 
 
 Re: A proof to an old inequality
Сообщение14.04.2016, 12:50 
Аватара пользователя
...similarly, $b=\frac 1 a$ yields $LHS-RHS=\frac {(a-1)^2} {\ldots^+} P_7^+$, but how to get there... I hope to find some $b=b(a,k)$ having a clear extremum in terms of $k$, but to no success yet.

 
 
 
 Re: A proof to an old inequality
Сообщение14.04.2016, 17:47 
Аватара пользователя
The way you deal with the problem is interesting, but the proofs when the minimum is achieved seem to not be easy.

 
 
 [ Сообщений: 11 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group