2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Посмотреть правила форума



Начать новую тему Ответить на тему
 
 Вероятность успеха в выборке кандидата из бюллетеня
Сообщение23.03.2016, 14:04 


23/03/16
2
Добрый день! Есть такая задачка: Для включения в избирательный бюллетень необходимо выбрать 4 из 10 кандидатов. Все кандидаты имеют равные вероятности успеха. Какова вероятность того, что в бюллетень попадет интересующий нас кандидат?

Решение: Всего способов выбрать 4 кандидата из 10 есть $C_{10}^4$. Пусть $A$ - нужное нам событие (что интересующий нас кандидат попадет). Тогда дополнению $\bar A$ соответствуют $C_9^4$ способов из вышеуказанных $C_{10}^4$ (то есть при выборке 4 кандидатов наш кандидат не попадает). Тогда $P(\bar A)=\frac{C_9^4}{C_{10}^4}$. Отсюда и находим $P(A)$.

Чую, что решение, вроде, правильное, но требуется ваше мнение, господа.

 Профиль  
                  
 
 Re: Вероятность успеха в выборке кандидата из бюллетеня
Сообщение23.03.2016, 14:47 
Заслуженный участник
Аватара пользователя


18/09/14
4984
finchy87, правильно, но немного вычурно. Можно было написать искомую вероятность непосредственно, без перехода к вероятности противоположного события.

 Профиль  
                  
 
 Re: Вероятность успеха в выборке кандидата из бюллетеня
Сообщение23.03.2016, 14:50 
Заслуженный участник
Аватара пользователя


23/07/05
17975
Москва
И даже вообще без всякой комбинаторики.

 Профиль  
                  
 
 Re: Вероятность успеха в выборке кандидата из бюллетеня
Сообщение23.03.2016, 15:10 


23/03/16
2
Большое Вам спасибо, Mihr и Someone!
Согласен, что решение немного нелогичное. Но с ходу придумалось лишь такое решение

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 4 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: DariaRychenkova


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group