2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2
 
 Re: Right-angled triangle and incircles
Сообщение17.03.2016, 01:42 
Аватара пользователя
mihiv
Thank you for the elegant solution! I saw 6 or 7 different solutions to this problem and all of them was totally different. I suppose there are even more. It is the reason here http://www.cut-the-knot.org/m/Geometry/ ... ngle.shtml to have just two solutions.

 
 
 
 Re: Right-angled triangle and incircles
Сообщение17.03.2016, 10:29 
Аватара пользователя
Изображение
Очевидно, красная и синяя площади равны. Но это и означает, что $(r_1+r_3)^2+(r_2+r_3)^2=(r_1+r_2)^2$

 
 
 
 Re: Right-angled triangle and incircles
Сообщение17.03.2016, 12:01 
Аватара пользователя
Very impressive and beautiful! Thanks for sharing it! For this problem I have the feeling - every skilled mathematician is capable to solve it and finds something different and interesting. I saw no two people with the same solution.

 
 
 [ Сообщений: 18 ]  На страницу Пред.  1, 2


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group