Мартин Гарднер, Математические новеллы.
Другой, несколько неожиданный метод упорядочения и счета положительных рациональных чисел был предложен американским логиком Чарлзом С. Пирсом. Возьмем две дроби —

и

(вторая дробь не имеет смысла, но для наших целей это обстоятельство несущественно). Образуем новую дробь, числитель которой равен сумме числителей, а знаменатель — сумме знаменателей двух исходных дробей, и поместим ее между ними:

. Проделав только что выполненные операции над каждой парой дробей, стоящих рядом, получим

В свою очередь эти пять дробей превращаются в девять дробей

и т.д.
В получающейся бесконечной последовательности каждое рациональное число будет встречаться один и только один раз, причем в несократимом виде. Метод Пирса делает излишним вычеркивание таких дробей, как, например,

, эквивалентных более простым дробям, также представляющим рациональные числа. При использовании метода Пирса сократимые дроби не появляются. При использовании же других методов упорядочения рациональных чисел исключение дробей, числитель и знаменатель которых содержат общие множители, просто необходимо, иначе одно и то же рациональное число будет сосчитано несколько раз. В методе Пирса происходит постепенное, шаг за шагом, «замазывание щелей» в ряду рациональных чисел, а дроби можно нумеровать в порядке их появления.
Конечно, выделенное (мной) утверждение требует доказательства.