2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2  След.
 
 Предел 1/x, x->0 не существует или ∞ ?
Сообщение18.01.2016, 12:20 
Здравствуйте! Подскажите, пожалуйста, верна ли будет запись $\displaystyle\lim\limits_{x\to 0}\dfrac{1}{x}=\infty$?

Я понимаю, что $\displaystyle\lim\limits_{x\to +0}\dfrac{1}{x}=+\infty$

Я понимаю, что $\displaystyle\lim\limits_{x\to -0}\dfrac{1}{x}=-\infty$

Потому получается, что $\displaystyle\lim\limits_{x\to +0}\dfrac{1}{x} \ne \displaystyle\lim\limits_{x\to -0}\dfrac{1}{x}$, значит предел не существует.

Верна ли запись $e^{+\infty}=+\infty$?

Верна ли запись ${2\cdot (+\infty)}=+\infty$?

 
 
 
 Re: Предел 1/x, x->0 не существует или ∞ ?
Сообщение18.01.2016, 12:46 
Аватара пользователя
Это исключительно вопрос соглашения.
Обычно считают, что запись $\displaystyle\lim\limits_{x\to 0}\dfrac{1}{x}=\infty$ верна, именно потому, что все частичные пределы равны $+\infty$ или $-\infty$.
Но это не значит, что сказать "предел не существует" будет сильно неправильно.
Это вопрос соглашения.

 
 
 
 Re: Предел 1/x, x->0 не существует или ∞ ?
Сообщение18.01.2016, 13:45 
toreto в сообщении #1091736 писал(а):
Верна ли запись
Не позволяйте себя обманывать математической записи. $\lim f(x)=1$ и $\lim f(x)=\infty$ — две большие разницы. Вторая запись вовсе не означает, что мы дополняем множество действительных чисел некой бесконечностью; это можно сделать, но это надо делать :wink: Сама по себе запись бесконечного предела этого не влечёт.
$\lim\limits_{x\to+\infty}e^x=+\infty$; $\lim f(x)=+\infty\Rightarrow\lim 2f(x)=+\infty$ — абсолютно верно; написанное вами — ересь (без соответствующего предисловия).

 
 
 
 Re: Предел 1/x, x->0 не существует или ∞ ?
Сообщение18.01.2016, 13:48 
Аватара пользователя
iifat в сообщении #1091787 писал(а):
Не позволяйте себя обманывать математической записи.

Дык никто в математике так и не пишет.

 
 
 
 Re: Предел 1/x, x->0 не существует или ∞ ?
Сообщение18.01.2016, 14:03 
Munin в сообщении #1091790 писал(а):
никто в математике так и не пишет
Как именно? Предел равен бесконечности? Никто не пишет? А старые учебники, по которым я учился — их сожгли?

 
 
 
 Re: Предел 1/x, x->0 не существует или ∞ ?
Сообщение18.01.2016, 14:04 
Аватара пользователя
iifat в сообщении #1091794 писал(а):
Как именно?

Никто не пишет вот так:

 
 
 
 Re: Предел 1/x, x->0 не существует или ∞ ?
Сообщение18.01.2016, 14:21 
А! Так — да. Не пишут.

 
 
 
 Re: Предел 1/x, x->0 не существует или ∞ ?
Сообщение19.01.2016, 00:30 
Хорошо, спасибо, а почему никто не пишет $e^{+\infty}=+\infty$? Из-за того, что "бесконечности разного порядка"?

 
 
 
 Re: Предел 1/x, x->0 не существует или ∞ ?
Сообщение19.01.2016, 00:41 
Аватара пользователя
Потому что бесконечность — не число, и возводить в неё число (в данном случае $e$) — бессмыслица.

 
 
 
 Re: Предел 1/x, x->0 не существует или ∞ ?
Сообщение19.01.2016, 01:16 
Aritaborian в сообщении #1092040 писал(а):
Потому что бесконечность — не число, и возводить в неё число (в данном случае $e$) — бессмыслица.

А можно ли сказать, что предел последовательности $a_n=e^n$ равен $+\infty$?

 
 
 
 Re: Предел 1/x, x->0 не существует или ∞ ?
Сообщение19.01.2016, 01:22 
1. Прочитайте определение понятия «предел последовательности есть $+\infty$».
2. Установите, удовлетворяет ли последовательность условиям, перечисленным в определении.
3. В зависимости от ответа на п.2, говорите либо не говорите.
Если возникнут некие трудности — обращайтесь.

 
 
 
 Re: Предел 1/x, x->0 не существует или ∞ ?
Сообщение19.01.2016, 03:22 
toreto в сообщении #1092037 писал(а):
а почему никто не пишет $e^{+\infty}=+\infty$?
Потому что обычно не принято доопределять функции или что-то ещё до $[-\infty;+\infty]$ по непрерывности: ведь $[-\infty;+\infty]$ ничем не лучше проективной прямой $\mathbb R\cup\{\infty\}$, а в ней $e^\infty$ нельзя доопределить по непрерывности.

-- Вт янв 19, 2016 05:32:17 --

Мне сначало показалось, что тут упоминали, что $\mathbb R$ можно пополнить бесконечностями двумя способами: одной и двумя. И топология у результатов разная, откуда всё и идёт. В $\mathbb R\cup\{\infty\}$ можно доопределить по непрерывности $x\mapsto 1/x$ в нуле и $\infty$, а в $\overline{\mathbb R}$ можно доопределить эту функцию в $\pm\infty$, но в нуле так и останется дырка. В общем случае такие доопределения, вроде, совершенно бесполезны: ну да, база предела $x\to\infty$ или $x\to\pm\infty$ стала базой окрестностей элемента множества и топологически теперь неотличима [и то только для $\infty$] от какой-нибудь $x\to 7$ — но на этом все радости заканчиваются. :roll:

 
 
 
 Re: Предел 1/x, x->0 не существует или ∞ ?
Сообщение19.01.2016, 11:43 
Аватара пользователя
Aritaborian в сообщении #1092040 писал(а):
Потому что бесконечность — не число

Я сам хотел сказать ровно то же самое.

Поэтому не буду повторять, а немного добавлю.

Есть два разных понятия: число и точка.

Вначале для школьников они существуют по отдельности, как просто слова из разных миров: из арифметики / алгебры и из геометрии. Всё нормально.

Потом школьники изучают числовую прямую и координатную плоскость. И научаются сопоставлять $\textit{число}\leftrightarrow\textit{точка}.$ На числовой прямой каждая точка - это какое-то число из множества $\mathbb{R}=(-\infty,+\infty)$ - множества действительных чисел. И напротив, каждое число из $\mathbb{R}$ - это какая-то точка на прямой.

А теперь, надо мысленно снова разделить эти понятия. Развести их. К прямой линии можно добавить ещё точки. Это будут "бесконечно удалённые точки", одна или две. Это сделать можно, чисто геометрически (предел - это геометрическое понятие, например, в школьной геометрии постоянно встречаются пределы: при определении длины кривой линии, площади фигуры, при определении касательной). Но при этом, к множеству $\mathbb{R}$ нельзя добавить таких чисел. Потому что числа "идут с другим комплектом": чтобы какой-то новый элемент можно было назвать числом, его надо вписать во все арифметические операции, научиться проводить с ним всевозможные вычисления.

К множеству $\mathbb{R},$ конечно, можно добавить ещё новые числа, но другие. Например, могут получиться комплексные числа. Или, может получиться так называемое "нестандартное множество действительных чисел", в котором будут "актуальные бесконечности". Но я не советую так делать. Главная проблема здесь в том, что вы не можете добавить числа по одному - вам придётся сразу добавлять бесконечно много новых чисел, сразу не меньше чем копию исходного множества $\mathbb{R},$ а то и кучу таких копий.

----------------

Ещё я хотел бы подчеркнуть такую вещь. Добавление одной точки $\infty$ и добавление двух точек $\pm\infty$ - это действия разные. Получатся разные результаты. И нельзя добавить и то и другое. То есть, вы должны рассматривать три разных конструкции:
- просто числовая прямая $(-\infty,+\infty)$;
- числовая прямая $(-\infty,+\infty)\cup\{\infty\},$ пополненная одной бесконечно удалённой точкой;
- числовая прямая $(-\infty,+\infty)\cup\{-\infty,+\infty\},$ пополненная двумя бесконечно удалёнными точками.
Эти конструкции используются неформально рядом, только чтобы "сообщить дополнительную уточнённую информацию", когда это можно. Например, если вы считаете $\lim\limits_{x\to+\infty}e^x,$ то вы можете написать ответ $\infty,$ и будете абсолютно правы. Определению бесконечного предела это удовлетворяет. Но вы можете сделать большее, вы можете уточнить ответ, и написать $+\infty$ (и именно это будет вам зачтено как решённая задача). И это тоже будет правильным ответом, и выполненным определением.

Но по сути, надо понимать, что мы имеем дело с тремя геометрическими фактами:
1. Если мы рассматриваем просто числовую прямую $(-\infty,+\infty),$ то в ней предел $\lim\limits_{x\to+\infty}e^x$ не существует. (Для вас это произносят как "не существует конечный предел".)
2. Если мы рассматриваем числовую прямую $(-\infty,+\infty)\cup\{\infty\},$ то в ней предел $\lim\limits_{x\to+\infty}e^x$ существует, и равен $\infty.$
3. Если мы рассматриваем числовую прямую $(-\infty,+\infty)\cup\{-\infty,+\infty\},$ то в ней предел $\lim\limits_{x\to+\infty}e^x$ существует, и равен $+\infty.$
Просто от вас ждут формулировки именно третьего факта, поскольку он "наиболее подробный".

-- 19.01.2016 11:44:05 --

А, ну и это уже arseniiv произнёс, и даже больше и подробней...

-- 19.01.2016 11:50:19 --

----------------

Ещё добавлю. Если мы говорим про точки, то почему вообще пишем под знаком предела $e^x$ и другие формулы? На самом деле, конечно, в множестве $\mathbb{R}\cup\{\infty\}$ или $\mathbb{R}\cup\{-\infty,+\infty\}$ вычислять ничего нельзя. Но это было бы нам неудобно: мы хотим брать разные функции, и их исследовать, чтобы посмотреть, какие у них будут пределы. Поэтому, мы просто вычисляем что-то в рамках обычного $\mathbb{R},$ а потом переносим эти числа уже в пополненные множества, по очевидному (естественному) сопоставлению.

 
 
 
 Re: Предел 1/x, x->0 не существует или ∞ ?
Сообщение19.01.2016, 16:39 
Аватара пользователя
Munin в сообщении #1092147 писал(а):
На самом деле, конечно, в множестве $\mathbb{R}\cup\{\infty\}$ или $\mathbb{R}\cup\{-\infty,+\infty\}$ вычислять ничего нельзя.

Если не сложно, объясните, пожалуйста, что это значит, я не совсем понял. То есть: почему нельзя вычислять?

 
 
 
 Re: Предел 1/x, x->0 не существует или ∞ ?
Сообщение19.01.2016, 16:43 
Аватара пользователя

(Оффтоп)

iou в сообщении #1092268 писал(а):
Munin в сообщении #1092147 писал(а):
На самом деле, конечно, в множестве $\mathbb{R}\cup\{\infty\}$ или $\mathbb{R}\cup\{-\infty,+\infty\}$ вычислять ничего нельзя.

Если не сложно, объясните, пожалуйста, что это значит, я не совсем понял. То есть: почему нельзя вычислять?
Что тут непонятного, просто Munin запретил, а с ним лучше не связываться, так что вычислять не будем.

 
 
 [ Сообщений: 16 ]  На страницу 1, 2  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group