2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Простые фильтры
Сообщение31.12.2015, 22:51 
Сначала известная конструкция. Берём произвольное множество А. Берём булеву алгебру всех его подмножеств. Берём множество ультрафильтров на А, они соответствуют гомоморфизмам этой булевой алгебры в алгебру из двух элементов. Это множество ультрафильтров является Стоун-Чеховским расширением множества А с дискретной топологией. Оно является неким экстремальным среди всех компактных хаусдорфовых расширений А.
Теперь слегка изменим конструкцию. Начинаем с частично упорядоченного множества А. Берём семейство всех его подмножеств, обладающих таким свойством: вместе с любым элементом x подмножество включает все элементы, большие чем x. Такие подмножества, упорядоченные по включению, образуют дистрибутивную решётку (на самом деле даже алгебру Гейтинга). Гомоморфизмы этой решётки в решётку из двух элементов называются простыми фильтрами, в общем случае их больше, чем максимальных фильтров (для булевых алгебр это одно и то же, ультрафильтры). Множество простых фильтров с естественным порядком является расширением упорядоченного множества А. Какими экстремальными свойствами вроде Стоун-Чеховских оно обладает? Вопрос, видимо, решённый, но где почитать?

 
 
 
 Re: Простые фильтры
Сообщение10.01.2016, 13:36 
Почитайте здесь: https://en.wikipedia.org/wiki/Esakia_duality

 
 
 
 Re: Простые фильтры
Сообщение10.01.2016, 14:57 
Да, спасибо!

 
 
 [ Сообщений: 3 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group