2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Полнота по Тьюрингу
Сообщение22.12.2015, 04:53 
Аватара пользователя
Я правильно понимаю, что существует такая функция из множества множеств конечного числа непустых символов на ленте машины Тьюринга в какое-то множество множеств конечного числа непустых символов на этой ленте, что не существует такой машины Тьюринга, реализующей ее? И всегда существует, если число состояний машины счетно? И в этой случае для несуществования машины надо снять требования конечности множеств непустых символов, которые являются элементами множества аргументов нашей функции.

 
 
 
 Re: Полнота по Тьюрингу
Сообщение22.12.2015, 05:54 
Sicker в сообщении #1084635 писал(а):
множеств конечного числа непустых символов на ленте машины Тьюринга
Вы хотели сказать, множеств лент, содержащих конечное число непустых символов?

 
 
 
 Re: Полнота по Тьюрингу
Сообщение22.12.2015, 17:14 
Да, есть невычислимое отображение конечных лент в конечные ленты - проблема остановки.
Что касается бесконечных лент, то вам надо будет заново определить что такое алгоритм/вычислимая функция. Классическое определение алгоритма требует конечного числа шагов для вычисления результата. За конечное число шагов вы не сможете проанализировать бесконечную ленту и/или напечатать бесконечный результат.

 
 
 [ Сообщений: 3 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group