2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Численные методы вычисления определенных интегралов
Сообщение01.12.2015, 06:41 
здравствуйте, помогите пожалуйста приступить к решению задачи по дисциплине вычислительная математика студенту-заочнику

нужно вычислить методом прямоугольников, трапеций и Симпсона определенный интеграл с шагом $h=0,1$

$$\int\limits_{0}^{1}x^2 \exp x dx$$

пока в литературе нашел про формулу трапеций

$$\int\limits_{a}^{b}f(x)dx \approx h(\frac{y_0+y_n}{2} + y_1+y_2+...+y_{n-1})$$ где $y_i=f(x_i)$ $(i=0,1,...,n)$

остаточный член имеет вид $R_1=-\frac{nh^3}{12}f''(\xi)=-\frac{(b-a) h^2}{12}f''(\xi)$
$a<\xi<b$

правильно ли я понимаю, что для вычисление по формуле трапеций, нужно вычислить значение функции на каждом шаге... а для этого берем таблицу для функции экспоненты и перемножаем на квадрат аргумента ... потом все это подставляем в квадратурную формулу и получаем приближенное значение интеграла... но при этом совершаем погрешность усечения... то есть для того чтобы получить окончательное решение еще нужно посчитать сумму таких остаточных членов... а для этого нужно вычислить производную произведения ... а потом найти еще одну производную от полученного выражения

вычисления организуем в таблице

$
\begin{array}{l|l|l|l}
x &  x^2 & \exp(x)=e^x & e^x\cdot x^2 \\
\hline
0,1 & 0,01 & 1,1052 & 0,011052 \\
0,2 & 0,04 & 1,2214 & 0,048856 \\
0.3 & 0,09 & 1,3499 & 0,121491 \\
0,4 & 0,16 & 1,4918 & 0,238688 \\
0,5 & 0,25 & 1,6487 & 0,412175 \\
0,6 & 0,36 & 1,8221 & 0,655956 \\
0,7 & 0,49 & 2,0138 & 0,986762 \\
0,8 & 0,64 & 2,2255 & 1,42432 \\
0,9 & 0,81 & 2,4596 & 1,992276 \\
1    & 1      & 2,7183 & 2,7183 \\
\end{array}

$

$
\int\limits_{0}^{1}x^2 \exp x dx \approx 0,1\cdot (\frac{0,011052+2,7183}{2} + 0,048856 + 0,121491 + 0,238688 + 0,412175 + 0,655956 + 0,986762 + 1,42432 + 1,992276) =0,72452
$

это похоже на правду? :?:
табличные значение $e^x$ не точные, следовательно существует погрешность... более того происходит умножение неточного числа на точное и потом происходит суммирование. Интересно, такую погрешность необходимо учитывать в данном методе или ей можно просто пренебречь и может быть такая погрешность уже заложена в остаточном члене? :?:

 i  Lia: Название темы изменено на информативное без согласования с автором.

 
 
 
 Posted automatically
Сообщение01.12.2015, 06:48 
 i  Тема перемещена из форума «Помогите решить / разобраться (М)» в форум «Карантин»
по следующим причинам:

- отсутствуют собственные содержательные попытки решения задач(и).

Исправьте все Ваши ошибки и сообщите об этом в теме Сообщение в карантине исправлено.
Настоятельно рекомендуется ознакомиться с темами Что такое карантин и что нужно делать, чтобы там оказаться и Правила научного форума.

 
 
 
 Posted automatically
Сообщение08.12.2015, 05:34 
 i  Тема перемещена из форума «Карантин» в форум «Помогите решить / разобраться (М)»

 
 
 
 Re: Численные методы вычисления определенных интегралов
Сообщение08.12.2015, 08:19 
Аватара пользователя
IHmG в сообщении #1078490 писал(а):
это похоже на правду?

У вас интеграл аналитически берётся. Вот и сравнивайте: $e-2=0.718281828459045$

-- 08.12.2015, 09:24 --

IHmG в сообщении #1078490 писал(а):
такую погрешность необходимо учитывать в данном методе
В общем случае такую погрешность учитывать надо, но проявлять она себя будет только при весьма специфичных обстоятельствах.

В вашем случае, нужно в первую очередь оценить максимальное возможно значение остаточного члена. Для этого найдите вторую производную подынтегральной функции и прикиньте, какое максимальное значение может принимать её модуль на отрезке интегрирования. Подставьте это значение в формулу и получите оценку сверху на погрешность метода. Именно эта величина будет каждый раз, когда вы не знаете точного значения интеграла, говорить, на сколько сильно полученное вами значение отличается от искомого.

 
 
 
 Re: Численные методы вычисления определенных интегралов
Сообщение10.12.2015, 04:38 
спасибо :)

 
 
 
 Re: Численные методы вычисления определенных интегралов
Сообщение11.12.2015, 05:03 
Найдем остаточный член

$$f'(x)=(x^2\cdot e^x)'=2x \cdot e^x + x^2 \cdot e^x$$
$$f''(x)=[(2x+x^2)\cdot e^x]'=(2x+x^2)' \cdot e^x + (2x+x^2) \cdot e^x = (2+2x) \cdot e^x + (2x+x^2) \cdot e^x  = e^x (x^2+4x+2)$$
$$f''(0)=2$$
$$f''(1)=19,0281$$

так как значение производной пойдет в числитель, а нам нужно найти максимальный остаточный член, то возьмем например число 0,9 (максимальный с учетом шага в задаче)

$$f''(0,9)=17,424303$$

$$R=-\frac{0,1^2}{12} \cdot 17,424303 \approx -0,014520 \approx -0,01$$

:?: не понятно... остаточный член нужно считать на каждом шаге? последнее округление - результат подгонки под аналитический ответ... а как понять законное округление \ точность?

 
 
 [ Сообщений: 6 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group