2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Единственность представления неявной функции
Сообщение29.11.2007, 12:18 
Как-то тут задавали очень интересный вопрос, который остался без ответа. К сожалению, не смог найте данную тему, можно его продублировать?

Имеется "хорошая" (непрерывная, монотонная по второму аргументу, если надо - непрерывно дифференцируемая) функция $F:\mathbb{R}^2 \to \mathbb{R}$. Требуется найти все функции $G:\mathbb{R}^2 \to \mathbb{R}$, такие что $F(x,y)=0$ тогда и только тогда, когда $G(x,y)=0$.

 
 
 
 
Сообщение29.11.2007, 16:04 
Аватара пользователя
Вы ожидаете ответ какого характера?

 
 
 
 
Сообщение29.11.2007, 17:10 
В виде какой-нибудь характеризации множества таких функций $\mathbb{G}=\left\{ G\right\}$, отличной от приведенной.
Что-то вроде этого (скорее всего неверно):
1. $\mathbb{G}$ - это множество функций вида $g(F(x,y))$, где $g$ - произвольная строго монотонная функция, такая что $g(0)=0$;
2. $\mathbb{G}$ - это множество решений $G$ дифференциального уравнения
$G'_x(x,y+c)/G'_y(x,y+c) = F'_x(x,y)/F'_y(x,y)$, где $c$ - некоторая подходящая константа.

 
 
 
 
Сообщение29.11.2007, 17:32 
Аватара пользователя
Ну, что-нибудь типа множества функций вида $g(F(x,y))G(x,y)$, где $g(z)=0\Longleftrightarrow z=0$ и $F(x,y)\neq0\Longrightarrow G(x,y)\neq 0$. А может быть, и не так.

А вообще, непонятно, зачем нужна такая характеристика.

 
 
 
 
Сообщение29.11.2007, 18:09 
Аватара пользователя
Или вот ещё например так: множество функций вида $H(x,y) F(x,y)$, где $H$ --- любая функция из $\mathbb{R}^2 \to \mathbb{R} \setminus \{0\}$ :)

 
 
 
 
Сообщение30.11.2007, 09:21 
Спасибо. Но, по-моему, все это частные решения.

P.S. В условии задачи, чтобы все было хорошо, видимо, надо дополнительно потребовать, чтобы $F$ действительно задавала какую-нибудь функцию, то есть чтобы уравнение $F(x,y)=0$ имело решение для всех $x$ из некотрого интервала, иначе совсем все плохо.

 
 
 
 
Сообщение30.11.2007, 10:20 
Аватара пользователя
worm2 писал(а):
Или вот ещё например так: множество функций вида $H(x,y) F(x,y)$, где $H$ --- любая функция из $\mathbb{R}^2 \to \mathbb{R} \setminus \{0\}$ :)


Мне кажется, при поставленном условии это действительно самое общее решение. Может в условии что-то пропущено? Например требование дифференцируемости $G$ по второму аргументу?

 
 
 
 
Сообщение30.11.2007, 10:44 
Henrylee
На самом деле хочется посмотреть на решение при любых дополнительных условиях регулярности на $F$ и $G$. Поэтому, если потребуется, можно делать любые дополнительные предположения (в частности, если надо, о непрерывной дифференцируемости и т.п.).
Мне кажется, что для заданного $F$ все такие функции $G$ можно выразить как решение некоторого дифференциального уравнения в частных производных (наподобие приведенного выше).
Общее решение возможно имеет вид: $G=H(F(x,y),x,y)$, где $H$ - произвольная функция, обращающаяся в нуль тогда и только тогда, когда первый аргумент $=0$.

 
 
 
 
Сообщение30.11.2007, 11:00 
Аватара пользователя
По поводу общего решения. А чем Вам не нравится предложенное Worm2?
Оно действительно дает все функции. На самом деле, если $G$ произвольная с заданным свойством, то $H$ находится как отношение $G$ к $F$ в каждой точке (где они обе не ноль). При условии непрерывности, например, по второму аргументу требуем, чтобы $H$ была непрерывна по этому аргументу. Приведенное же дифф. уравнение уже предполагает дифференцирцемость функции $G$. Но если так, то чем плохо потребовать того же от функций $F$ и $H$.
PS Мне просто не понятно зачем искуственно усложнять задачу. Если я не прав и есть какая-то принципиальная причина это сделать, почему бы об этом не сказать :)

 
 
 
 
Сообщение30.11.2007, 11:26 
Причина усложнения состояла в том, что я тогда не понимал идеи worm2. :oops: Теперь, когда вы разъяснили, все стало на свои места. Черт, как просто и красиво. worm2, Henrylee, спасибо!

 
 
 [ Сообщений: 10 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group