Заинтересовался вопросом, как в математике рождаются новые понятия и теории. Порывшись в голове, набросал следующие пути.
1. Ветвление и углубление. Раскапывается какой-то интересный частный случай, и для него доказываются теоремы, для общего случая, вообще говоря, неверные. Так понятие бикомпактности, которая теперь называется просто компактностью, появилось из исследования свойств счетной компактности.
2. Обобщение. Наоборот: частные случаи известны, осталось понять, что это только частные случаи. Яркий пример – понятие группы. В ХIХ в. было введено много разных групп, о каждой доказаны теоремы, часть из которых была специфична, а часть на самом деле выполнялась для всех групп, но тогда этого еще не осознавали, т.к. современного понятия группы не было. Это понятие, возникшее около 1870 г., было призвано упорядочить полученные результаты. Другой яркий пример – понятие множества. Множества чисел и точек давно были известны и использовались, а Кантор рискнул сделать следующий шаг и рассмотреть
множество-все-равно-чего.
3. Перекрестное опыление. Берем методы алгебры, применяем к задачам геометрии, получаем алгебраическую геометрию.
4. Потребность в основаниях математики. Так появилось понятие алгоритма – как формализация интуитивного представления о «способе рассуждений». Так же появилось понятие формальной системы и много еще чего чудесного.
5. Потребности иных наук. Много чего выросло из физических задач, кое-что – из экономических (теория массового обслуживания, например), что-то, говорят, пришло в математику из языков программирования… Да даже геометрия Лобачевского выросла из попыток понять, является ли наблюдаемое пространство в самом деле евклидовым.
6. ? Полет фантазии?
Вот этот пункт мне кажется сомнительным. Все вышеперечисленное имело истоки, рождалось из вопросов, на которые не было ответов, или из обобщения ответов на многие частные вопросы в ответ на один общий вопрос. А есть ли понятия/теории, придуманные кем-то из математиков просто «по приколу»? Вот я сейчас придумаю. Рассмотрим множество
, бинарную операцию
и пару
такие, что:
1) для любой пары
, кроме пары
,
2) для любого
, кроме
,
3) для любого
, кроме
,
4) для любого
найдется
такой, что
и
такой, что
.
И назовем это, скажем, бигруппой. Этот монстр родился в моем измученном бессонницей сознании из посыла «что бы такое придумать совсем от балды», и я не поручусь, что он внутренне непротиворечив, а тем более – что о нем можно доказать какие-то интересные теоремы. Но мне интересно, не родилось ли вот так, из ничего, без попыток ответа на уже известные вопросы, а просто в порядке игры ума, какое-нибудь из ныне известных математических понятий? Я понимаю, что вопрос сложный, намерения, в отличие от результатов, плохо документируются, и чем дальше в прошлое, тем хуже. Но вдруг есть на этот счет какая-то широко известная история?
Также приглашаю добавить к моей классификации пункты, которые мне самому в голову не пришли.