2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2, 3  След.
 
 Предел с тригонометрическими функциями
Сообщение06.10.2015, 23:48 
Найти предел \lim\limits_{x\to0}^{} $ \dfrac{\tg(\sin x)-\sin(\tg x)}{x^7}.
Конечный ответ, вроде, \dfrac{1}{30}.

До этого редко сталкивался с функциями, имеющими тригонометрический аргумент, но в целом, если учитывать ограниченность функций $ \sin x $ и $\cos x$, получается, что $\tg x$ будет выглядеть как крайне пологая кривая, периодически меняющая знак на больших промежутках. К тому же, очевидно, что $\tg(0)=0$, равно как и $\sin(\tg x)=0$. Полученное выражение будет в пределе выглядеть как $\lim\limits_{x\to0}^{} \dfrac{\tg(\sin x)-\sin(\tg x)}{x^7} = \dfrac{0-0}{0}$.

Полученную неопределённость раскладываем по правилу Лопиталя, получаем $\dfrac{\cos x}{\cos^2(\sin x)}-\dfrac{\cos(\tg x)}{\cos^2 x}$. Пределы $\cos$ равны единице, $\dfrac{1-1}{0}$, снова Лопиталь. Опять находим производные, появляется четвертая степень косинуса, дальше еще хуже.

Я практически уверен, что такой прямолинейный подход вряд ли подойдет для решения задачи, но в каком направлении хотя бы копать?

 
 
 
 Posted automatically
Сообщение07.10.2015, 00:01 
 i  Тема перемещена из форума «Олимпиадные задачи (М)» в форум «Карантин»
по следующим причинам:

- отсутствуют собственные содержательные попытки решения задач(и).

Исправьте все Ваши ошибки и сообщите об этом в теме Сообщение в карантине исправлено.
Настоятельно рекомендуется ознакомиться с темами Что такое карантин и что нужно делать, чтобы там оказаться и Правила научного форума.

 
 
 
 Posted automatically
Сообщение07.10.2015, 08:10 
Аватара пользователя
 i  Тема перемещена из форума «Карантин» в форум «Помогите решить / разобраться (М)»
Возвращено

 
 
 
 Re: Предел с тригонометрическими функциями
Сообщение07.10.2015, 08:36 
Аватара пользователя
Можно разложить числитель по формуле Тейлора, но придется повозиться, раскладывать до 7 степени!
Чтобы немного сократить вычисления, лучше сделать их в буквенном виде. Например, положим
$$\sin x = x + a_1x^3+b_1x^5+c_1x^7+o(x^8) $$ и
$$\tg x = x + a_2x^3+b_2x^5+c_2x^7+o(x^8) $$
Тогда можно подсчитать только $\tg(\sin x)$, вычитаемое будет отличаться от него только переменой номеров индексов.

 
 
 
 Re: Предел с тригонометрическими функциями
Сообщение07.10.2015, 09:27 
У этой задачи есть простое решение, она приведена в одной из книг В.И.Арнольда, или аналогичная ей. Я не знаю простого решения.

 
 
 
 Re: Предел с тригонометрическими функциями
Сообщение07.10.2015, 09:34 
sergei1961 в сообщении #1060039 писал(а):
У этой задачи есть простое решение

Вообще-то, простое решение у Арнольда есть для другой задачи --- про предел
$$
\lim_{x \to 0} \frac{\sin{\tg{x}}-\tg{\sin{x}}}
 {\arcsin{\arctg{x}}-\arctg{\arcsin{x}}}
$$

 
 
 
 Re: Предел с тригонометрическими функциями
Сообщение07.10.2015, 09:37 
Да, Вы правы, я ошибся. Что поделать-память уже часто подводит. А какое простое у второй задачи, там мне кажется его тоже нет, но как-то сказано, что умный сам догадается. Я в их число не попал.

 
 
 
 Re: Предел с тригонометрическими функциями
Сообщение07.10.2015, 10:09 
Аватара пользователя
Наверное, у Арнольда предел равен 1? А вот в исходной задаче надо найти нужный коэффициент честно, "без дураков".

 
 
 
 Re: Предел с тригонометрическими функциями
Сообщение07.10.2015, 12:06 
Аватара пользователя
solaris63 в сообщении #1059857 писал(а):
Найти предел \lim\limits_{x\to0}^{} $ \dfrac{\tg(\sin x)-\sin(\tg x)}{x^7}.
Конечный ответ, вроде, \dfrac{1}{30}.


\lim\limits_{x\to0}^{} $ \dfrac{\tg(\sin x)-\sin(\tg x)}{x^7} =\lim\limits_{x\to0}^{} $ \dfrac{\sin x-\cos x \sin(x/\sqrt{1-x^2})}{x^7}.

Затем по биному Ньютона
$(1 - x^2)^{-1/2} = 1 + \frac{1}{2}x^2+ \frac{3}{8}x^4+ \frac{5}{16}x^6$
$(1 - x^2)^{-3/2} = 1 + \frac{3}{2}x^2+ \frac{15}{8}x^4$
$(1 - x^2)^{-5/2} = 1 + \frac{5}{2}x^2$
$(1 - x^2)^{-7/2} = 1$

При $x^7$ получается $1/30$, другие не проверял

 
 
 
 Re: Предел с тригонометрическими функциями
Сообщение07.10.2015, 12:19 
Аватара пользователя
TOTAL в сообщении #1060149 писал(а):
другие не проверял

А, вдруг, есть ненулевой коэффициент при меньшей степени переменной? Да я за такую халтуру с зачета выгоняю! :evil:

 
 
 
 Re: Предел с тригонометрическими функциями
Сообщение07.10.2015, 12:27 
Аватара пользователя
Brukvalub в сообщении #1060154 писал(а):
TOTAL в сообщении #1060149 писал(а):
другие не проверял
А, вдруг, есть ненулевой коэффициент при меньшей степени переменной? Да я за такую халтуру с зачета выгоняю! :evil:
Другие, т.е. перед $x, x^3, x^5$, проверить оказалось ещё легче, нули.

 
 
 
 Re: Предел с тригонометрическими функциями
Сообщение07.10.2015, 12:28 
Аватара пользователя

(Оффтоп)

TOTAL в сообщении #1060158 писал(а):
Другие, т.е. перед $x, x^3, x^5$, проверить оказалось ещё легче, нули.

ЗачОт! :D

 
 
 
 Re: Предел с тригонометрическими функциями
Сообщение07.10.2015, 15:13 
provincialka в сообщении #1060073 писал(а):
Наверное, у Арнольда предел равен 1?
Угу. Я этот пример когда-то со студентами разбирал на занятиях по истории математики. Решение написано в книжке: Арнольд В.И. Гюйгенс и Барроу, Ньютон и Гук. М.: Наука, 1989. Но оно непонятное, пришлось переписать его "под себя".

 
 
 
 Re: Предел с тригонометрическими функциями
Сообщение07.10.2015, 19:09 
Поделитесь решением из Арнольда?

-- 07.10.2015, 20:12 --

В исходной задаче может быть попробовать синус(синуса) прибавить и отнять?

А я с зачёта или экзамена вообще никогда никого не выгоняю, только за списывание. Ставлю оценку, хорошую-похвалю, плохую-пожурю, а когда и поуспокаиваю.

 
 
 
 Re: Предел с тригонометрическими функциями
Сообщение07.10.2015, 20:11 
Аватара пользователя
Решение из Арнольда (примечание (8) в конце):
    Цитата:
    Изображение

    Если графики несовпадающих аналитических функций $f$ и $g$ касаются прямой $y=x$ в нуле (рис. 37), то отношения $|AB|/|BC|$ и $|BC|/|ED|$ стремятся к единице, когда $A$ стремится к нулю. Поэтому искомый предел отношения $|AB|/|D'E'|$ равен единице.

 
 
 [ Сообщений: 31 ]  На страницу 1, 2, 3  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group