То есть, с изменением координат меняется тензор
, но таким образом, что беря старые вектора в новых координатах, их скалярное произведение (определённое через свёртку с метрическим тензором), не изменится?
Да.
Одно уточнение: меняются компоненты (координаты) тензора. Про сам тензор говорят, что он не меняется, потому что сам тензор - это тоже некая "внекоординатная" геометрическая сущность.
То есть, в силу того, что косинус угла у нас выражается по теореме косинусов через длины - он у нас не будет изменяться при преобразованиях координат?
В силу того, что косинус угла выражается через длины - он становится частью той геометрии, которая "привязана" к метрике.
Есть разные геометрии. Разные её, так сказать, "слои". Ну, грубо говоря:
- есть геометрия, для которой важны только близости точек друг к другу. Здесь можно определить понятие "размерность", понятие "линия" ("кривая"), говорить о том, что линия делит плоскость на две области, какие-то точки лежат по одну сторону, а какие-то по другую, и так далее. Это топология.
- есть геометрия, для которой есть такой объект, как "прямая". Здесь ещё нет углов и расстояний, но можно найти середину отрезка. Можно взять параллельную проекцию одной прямой на другую, и таким образом, перенести на другую прямую деление в заданном отношении. Это аффинная геометрия.
- и наконец, есть геометрия, в которой введено расстояние. Отсюда автоматически возникают углы, площади, и окружности. Это евклидова геометрия. (В более общем смысле, метрическая.)
То, что рассказывали в школе - это сумма фактов одной, другой и третьей геометрий. А надо их научиться разделять у себя в голове. В то же время, углы относятся к метрическому "слою", они от него неотделимы. (Их можно ввести раньше, но нельзя - позже. Если вы вводите расстояния, то у вас автоматически получаются и углы.)
Кстати, в них как раз определяется
через
Ну да. Но заметьте, это вполне аккуратная формула. В ней всё на месте, и нет ничего непонятного.
Что значит "подождать"? Рассмотреть функцию от одного аргумента? А как скалярное произведение можно рассматривать от одного аргумента?
Если в функции двух аргументов зафиксировать один аргумент, то можно это сочетание "функция + конкретное значение аргумента" рассматривать как функцию второго аргумента.
Кстати, такой вопрос еще - не до конца понимаю сути двойственного пространства. Что, если его не вводить, а просто "скалярно перемножать" два контравектора? Получим структуру, которая не будет инвариантной? Почему?
Дело вот в чём. Как я уже сказал, бывают разные уровни геометрии. И на некотором уровне у нас ещё нет метрики. И с этим сопряжено ещё одно неудобное обстоятельство: у нас нет скалярного произведения векторов. (Не говоря уже о векторном :-) Пока мы его не ввели, мы не можем перемножать два "контравектора" (говорят просто - вектора). Но если мы введём двойственное (= сопряжённое) пространство, то мы можем перемножать вектор и ковектор. Но зато, мы не можем превращать вектор в ковектор! Это будет поистине отдельное пространство, "параллельный мир".
И только поднявшись на уровень метрической геометрии, мы получаем метрику, скалярное произведение, и отождествление прямого и сопряжённого пространств. Но в математике этот шаг откладывают до последнего. И не зря: иногда пригождается геометрия, разработанная, казалось бы, "про запас", без скалярного произведения.
Например, есть пространство
термодинамических параметров газа. Там всё есть: и расстояния по одной координате, и расстояния по другой координате, и даже площадь (работа). Но вот скалярного произведения там нет! И углов нет, и поворачивать векторы, отложенные вдоль одной оси, в направлении другой оси, нельзя. У них даже размерности разные, не говоря о единицах измерения.