2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Природа автофигур для построения кривых в MS Word
Сообщение05.02.2008, 00:42 
Аватара пользователя


20/06/07
179
Подскажите, кто знает, из "чего" строится автофигура -- кривая линия -- в Word'e ?
Мне она интересна, т.к. обладает нужными мне свойствами:
а) кривая проходит через все заданные (управляющие) точки;
б) достаточно легко (по крайней мере, в Word'е) добавляются дополнительные точки (и соответственно, сегменты) внутри кривой;
в) изменение одного сегмента влияет только на ближайшие соседние сегменты, при этом не изменяется форма всей кривой;
г) есть возможность управлять "поведением" любого сегмента, т.е. делать его прямым или искривленным;
д) есть возможность управлять "поведением" любого узла (варианты "автоузел", "гладкий", "прямой", "угловой").

Подскажите, пожалуйста, при помощи чего можно построить такую кривую (сплайн, кусочные многочлены или еще чего)

Заранее благодарю за помощь.

 Профиль  
                  
 
 
Сообщение05.02.2008, 13:58 
Заслуженный участник
Аватара пользователя


01/08/06
3131
Уфа
Похоже на B-сплайны, только для обеспечения свойств г) и д), похоже, придётся их как-то модифицировать.

Добавлено спустя 10 минут 14 секунд:

Например, для распрямления любого сегмента можно добавлять на него невидимые узлы, а при разбиении сегмента эти невидимые узлы удаляются.

 Профиль  
                  
 
 
Сообщение05.02.2008, 19:29 
Заслуженный участник
Аватара пользователя


17/10/05
3709
:evil:
Вам нужно конкретизировать вопрос. Например, прямоугольник со скруглёнными углами — это и есть прямоугольник со скруглёнными углами, то есть комбинация 2х пар отрезков и 4х четвертей окружности. Можно задавать радиус скругления, но важно, что это один общий радиус на все четыре четверти. Ни один сплайн не имеет таких характеристик.

Вас, наверное, устроит цепочка кривых Безье. Adobe, по крайней мере, устроила.

 Профиль  
                  
 
 
Сообщение05.02.2008, 23:01 
Аватара пользователя


20/06/07
179
Вот, нашел эл. вариант книги Шикина и Плиса "Кривые и поверхности на экране компьютера". Прочитал выборочно несколько параграфов.

Цитата:
Вас, наверное, устроит цепочка кривых Безье

Похоже, действительно, в Word'е используются кривые Безье.
Вот только в книге большое внимание уделяется нахождению коэффициентов, позволяющих управлять интерполяционными или наоборот, сглаживающими возможностями сплайнов.
Но в ситуации с Word'ом получается, как видно, наоборот: значения коэффициентов задает сам пользователь, мышкой перемещая управляющие точки на кривой, а после изменения координаты управляющей точки, вновь пересчитывается кривая Безье.

Хочу узнать, так ли обстоит дело на самом деле?

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 4 ] 

Модераторы: Karan, Toucan, PAV, maxal, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group